每日论文推荐:字节提出视觉定位token来提升VLM模型的定位能力

论文介绍了一种名为Groma的新型模型,通过局部化视觉标记改进了多模态大型语言模型的视觉理解与定位。它在RefCOCO等基准上表现出色,尤其在处理复杂场景中的对象定位。研究关注模型在不同应用领域的潜力和未来扩展的可能性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

  1. 📌 元数据概览:
  • 标题:论文的标题是 “Groma: Localized Visual Tokenization for Grounding Multimodal Large Language Models”,这表明论文可能讨论的是如何在多模态大型语言模型(MLLMs)中实现更精细的、局部化的视觉感知能力。
  • 作者:作者是来自香港大学(The University of Hong Kong)和字节跳动公司(ByteDance Inc.)的研究人员。他们的背景可能涉及计算机视觉、自然语言处理和人工智能。
  • 链接:论文的具体网址是 https://arxiv.org/pdf/2404.13013.pdf,这个链接指向了论文在arXiv上的预印本。
  • 标签:论文的关键词或标签可能包括多模态大型语言模型(MLLMs)、视觉感知、区域化视觉标记(Localized Visual Tokenization)、视觉定位(Visual Grounding)等。
    在这里插入图片描述
    在这里插入图片描述
    在这里插入图片描述
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

linxid

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值