神经网络基础——激活函数的选择、参数初始化

本文详细介绍了神经网络的基本组成部分,包括输入层、输出层和隐藏层,以及各种激活函数如sigmoid、tanh、ReLU和SoftMax的特点、适用场景和局限性。此外,还探讨了参数初始化的方法,如均匀分布、正态分布和Kaiming、Xavier初始化。最后概述了神经网络的优点和缺点,以及在PyTorch中的实现和训练要点。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、神经网络
1、神经网络

        人工神经网络(Artificial Neural Network,即ANN也简称为神经网络(NN是一种模仿生物神经网络结构 和功能的计算模型。

 2、基本部分

        输入层:输入 x

        输出层:输出 y

        隐藏层:输入与输出之间所有层

3、特点

        同一层的神经元之间没有连接

        第 N 层的每个神经元和第 N-1层 的所有神经元相连(full connected),即全连接神经网络

        第 N-1层神经元的输出就是第 层神经元的输入

        每个连接都有一个权重值(w系数和b系数)

二、激活函数

        用于对每层的输出数据进行变换进而为整个网络注入了非线性因素。此时, 神经网络就可以拟合各种曲线

        1、sigmoid 激活函数

            公式:

             求导公式:

             绘制函数图像:

import torch
import matplotlib.pyplot as plt

# 函数图像
x = torch.linspace(-20,20,1000)
# 输入值x 通过 sigmoid函数 转换成 激活值y
y = torch.sigmoid(x)

# 创建画布、坐标轴
plt.plot(x,y)
plt.grid()
plt.show()

# 导数图像
x = torch.linspace(-20,20,1000,requires_grad=True)
# 自动微分
torch.sigmoid(x).sum().backward()

plt.plot(x.detach(),x.grad)
plt.grid()
plt.show()

        sigmoid 函数可以将任意的输入映射到 (0, 1) 之间,当输入的值大致在 <-6 或者 >6 时,意味着输入任何值 得到的激活值都是差不多的,这样会丢失部分信息。比如:输入 100 和输出 10000 经过 sigmoid 的激活值几乎都是等于 1 的,但是输入的数据之间相差 100 倍的信息就丢失了。

        对于 sigmoid 函数而言,输入值在 [-6, 6] 之间输出值才会

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值