float32 float16 bfloat16 推理训练GPU速度和内存调研

本文探讨了如何通过使用混合精度技术,如bfloat16,来优化大型语言模型的训练和推理过程,以减少GPU显存占用。然而,bfloat16并非所有显卡支持,且在某些模型中可能牺牲部分推理速度。LLaMa模型是实例,展示了这种优化策略的时间与空间权衡。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

概念:

参考:Accelerating Large Language Models with Mixed-Precision Techniques - Lightning AI

3种数量类型表示的数据范围不一样,以float32为例其中有1个符号位,8位表示指数,23位表示尾数

标准训练推理是用的float32,但是占用GPU显存太大,所以优化的方向就是一般就是,时间换空间或者是减少float32位精度。

需要特别说的是,bfloat16 是nvidia 提出的数据类型,不是所有显卡都支持,像3080,3090之后的显卡都ok

推理速度和显存占用

不同模型不一样,以LLaMa为例。时间换空间,显存占用减少了,推理时间增加了,很合理

参考:Accelerating Large Language Models with Mixed-Precision Techniques - Lightning AI

Lightning-AI

参考 bfloat16 running 4x slower than fp32 (conv) · Issue #11933 · Lightning-AI/pytorch-lightning · GitHub

在追求高性能计算的今天,了解如何利用NVIDIA A100 GPU上的CUTLASS库来优化矩阵运算至关重要。为了帮助你掌握这一技能,我推荐你阅读《NVIDIA A100 Tensor Cores优化策略:加速矩阵运算与高效数据移动》。这篇文章详细介绍了如何在NVIDIA Ampere架构下,特别是针对A100 GPU,实现高效的矩阵运算数据移动优化。 参考资源链接:[NVIDIA A100 Tensor Cores优化策略:加速矩阵运算与高效数据移动](https://wenku.csdn.net/doc/2e7vrasj3u?spm=1055.2569.3001.10343) 首先,要充分利用NVIDIA A100 GPU的Tensor Cores,需要明确它们在不同数据类型上的性能优势。例如,Tensor Cores在处理Bfloat16数据类型时,能够在保持高精度的同时显著提升性能,这是因为Bfloat16提供了接近IEEE单精度浮点数(F32)的精度,同时具有较小的存储需求更快的计算速度。 TensorFloat32是一种专为NVIDIA Ampere架构设计的混合精度格式,它允许开发者在训练推理中实现更高的性能精度。它结合了F32精度F16的存储优势,是一种更加灵活的数据类型。 在实际编程中,可以利用CUTLASS提供的模板算法来针对这些数据类型进行优化。例如,使用cutlass::gemm::DeviceGemm所提供的模板,可以编写支持Bfloat16TensorFloat32的矩阵乘法算法。这些模板函数允许开发者为特定的GPU架构数据类型配置参数,包括但不限于矩阵大小、步长是否使用共享内存等。 除此之外,CUTLASS还提供了丰富的数据移动策略,以确保数据能够高效地在GPU的不同内存层级之间传输。优化数据传输内存布局是提高Tensor Core利用率的关键。例如,通过预先分配管理内存、优化全局内存访问模式使用异步复制技术,可以减少内存访问的延迟带宽限制。 为了获得最佳性能,还应当考虑算法的并行化程度,以及如何将计算任务与数据传输任务合理地交织起来,利用GPU的执行单元达到最大化利用率。 在你掌握了这些知识后,结合《NVIDIA A100 Tensor Cores优化策略:加速矩阵运算与高效数据移动》中的示例最佳实践,你将能够在实际开发中针对NVIDIA A100 GPU优化矩阵运算,实现显著的性能提升。 参考资源链接:[NVIDIA A100 Tensor Cores优化策略:加速矩阵运算与高效数据移动](https://wenku.csdn.net/doc/2e7vrasj3u?spm=1055.2569.3001.10343)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值