机器学习系列之线性回归

一元线性回归

在机器学习中,线性回归被用来对连续型数据进行预测,来确定两种或者两种以上变量间的相互关系。本篇博客介绍线性回归的最简单的一种情况——一元线性回归。如下图,现在我们在图上画一系列的点,然后打算花一条线,这些点到这条线的距离尽可能的短。那么该怎么找到这条线了?线性回归就是很好的解决方法。

首先,假设 y 和 x 满足下面的一元线性关系:

y=θ0+θ1x

这称为线性回归方程,其中 θi 是回归系数。

使用 python 机器学习库 sklearn 来进行一元线性回归实验,实验代码如下:

    #!/usr/bin/env python3
    # -*- coding: utf-8 -*-

    from sklearn import linear_model
    import matplotlib.pyplot as plt

    import numpy as np

    if __name__ == '__main__':
        array = []
        with open('../resources/lg.txt', 'r') as file:
            for line in file.readlines():
                array.append(np.array(line.strip().split("\t")).astype(np.float))
        tmp = np.array(array)
        x = tmp[0:, 0:2]
        y = tmp[0:, 2:3]
        linear = linear_model.LinearRegression()
        linear.fit(x, y)
        plt.plot(x, y, 'b.')
        y = linear.coef_ * x + linear.intercept_
        plt.plot(x, y, 'r')
        plt.legend()
        plt.show()
        #进行预测
        x = np.array([1.0, 1.2])
        print(lr.predict(x))

 
实验结果图形如下:

可以得出:

y=3.00774324+1.69532264x

此时预测 x=1.2时的值得 : 5.04213041.
源码和实验数据可以去我的 github 上进行下载。

多元线性回归

日常生活中,一个因变量是和多个自变量有关的,比如房价会和房子大小、房子面积、房子的地理位置等因素有关,一元线性关系不足以解决这样的问题,可以使用多元线性来解决。
现有方程:

Y=Xβ

当 X 可逆时,会有
β=X1Y

当 X 不可逆时,上述公式就不成立了。
这是就需要对上式进行转化了:

Y=Xβ=>XTY=XTXβ

由于 XTX 是可逆的,得
β=(XTX)1XTY

现有示例方程: y=2+3x1+4x2
X=[[1,1,1],[1,1,2],[1,2,1]]
y=[[9],[13],[12]]

    from sklearn.linear_model import LinearRegression

    X = [[1, 1, 1], [1, 1, 2], [1, 2, 1]]
    y = [[9], [13], [12]]

    model = LinearRegression()
    model.fit(X, y)

    x2 = [[1, 4, 5]]
    y2 = model.predict(x2)
    print(y2)
[[ 34.]]

带入函数,得y=2+3x4+4x5=34, 验证正确。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
线性回归机器学习中的一种基本算法,梯度下降法是线性回归中常用的优化算法。下面是线性回归梯度下降法的实现步骤: 1.读取数据集,包括自变量和因变量。 2.初始化相关参数,包括学习率、迭代次数、截距和斜率等。 3.定义计算代价函数,常用的代价函数是均方误差(MSE)。 4.梯度下降,通过不断迭代更新截距和斜率,使得代价函数最小化。 5.执行梯度下降算法,得到最优的截距和斜率。 下面是Python代码实现: ```python import numpy as np # 读取数据集 def load_data(file_path): data = np.loadtxt(file_path, delimiter=',') x_data = data[:, :-1] y_data = data[:, -1] return x_data, y_data # 初始化相关参数 def init_params(): b = 0 k = 0 learning_rate = 0.01 num_iterations = 1000 return b, k, learning_rate, num_iterations # 定义计算代价函数 def compute_cost(b, k, x_data, y_data): total_error = 0 for i in range(len(x_data)): total_error += (y_data[i] - (k * x_data[i] + b)) ** 2 cost = total_error / float(len(x_data)) return cost # 梯度下降 def gradient_descent(b, k, x_data, y_data, learning_rate, num_iterations): m = float(len(x_data)) for i in range(num_iterations): b_gradient = 0 k_gradient = 0 for j in range(len(x_data)): b_gradient += (1/m) * ((k * x_data[j] + b) - y_data[j]) k_gradient += (1/m) * ((k * x_data[j] + b) - y_data[j]) * x_data[j] b = b - (learning_rate * b_gradient) k = k - (learning_rate * k_gradient) return b, k # 执行梯度下降算法 def linear_regression(file_path): x_data, y_data = load_data(file_path) b, k, learning_rate, num_iterations = init_params() print("Starting parameters: b = {0}, k = {1}, cost = {2}".format(b, k, compute_cost(b, k, x_data, y_data))) b, k = gradient_descent(b, k, x_data, y_data, learning_rate, num_iterations) print("After {0} iterations: b = {1}, k = {2}, cost = {3}".format(num_iterations, b, k, compute_cost(b, k, x_data, y_data))) # 调用线性回归函数 linear_regression('data.csv') ```

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值