import operator
def createDateSet():
group = array([[1.0,1.1],[1.0,1.0],[0,0],[0,0.1]])
labels = ['A','A','B','B']
return group,labels
def classify0(inX, dataSet, labels, k):
dataSetSize = dataSet.shape[0]
diffMat =tile(inX, (dataSetSize,1)) - dataSet
sqDiffMat = diffMat**2
sqDistances = sqDiffMat.sum(axis=1)
distances = sqDistances**0.5
sortedDistIndicies = distances.argsort()
classCount={}
for i in range(k):
voteIlabel = labels[sortedDistIndicies[i]]
classCount[voteIlabel] = classCount.get(voteIlabel,0)+1
sortedClassCount = sorted(classCount.items(),
key = operator.itemgetter(1),reverse = True)
return sortedClassCount[0][0]
kNN.classify0([0,0],group,labels,3)
详解:
dataSet.shape[0]:表示训练集中向量的个数。
shape[n]:表示第n维的长度
例如:
>>>group.shape[0]
4
>>>group.shape[1]
2
tile(inX,(dataSetSize,1)):得到的是dataSetSize个的inX。
tile(A,reps):construct an array by repeating A the number of times given by reps.
具体用法可见:docs.scipy.org/doc/numpy/reference/generated/numpy.tile.html
sqDiffMat.sum(axis=1):得到的是第二维的所有元素之和。
具体用法可见:docs.scipy.org/doc/numpy/reference/generated/numpy.sum.html
distances.argsort():是将distances里的元素从小到大排列,得到一个对应原来的元素的顺序排列。
具体用法可见:docs.scipy.org/doc/numpy/reference/generated/numpy.argsort.html
classCount.get(voteIlabel,0):返回字典中,voteIlabel的值,如果没有,则创建,并将值设为0(即第二个参数)。
sortedClassCount = sorted(classCount.items(),
key = operator.itemgetter(1),reverse = True)
将字典按照item的第一维逆向排序。
1.原书中使用的是python2.7环境,博文中代码经过修改能在python3.3中正常运行。
2.文中的维数按照第零维,第一维的顺序排列。