Caffe——清晰高效的深度学习(Deep Learning)框架
Caffe( http://caffe.berkeleyvision.org/ )是一个清晰而高效的深度学习框架,其作者是博士毕业于UC Berkeley的贾扬清( http://daggerfs.com/ ),他目前在Google工作。
Caffe是纯粹的C++/CUDA架构,支持命令行、Python和MATLAB接口;可以在CPU和GPU直接无缝切换:
Caffe::set_mode(Caffe::GPU);
Caffe的优势
1. 上手快:模型与相应优化都是以文本形式而非代码形式给出。
Caffe给出了模型的定义、最优化设置以及预训练的权重,方便立即上手。
2. 速度快:能够运行最棒的模型与海量的数据。
Caffe与cuDNN结合使用,测试AlexNet模型,在K40上处理每张图片只需要1.17ms.
3. 模块化:方便扩展到新的任务和设置上。
可以使用Caffe提供的各层类型来定义自己的模型。
4. 开放性:公开的代码和参考模型用于再现。
5. 社区好:可以通过BSD-2参与开发与讨论。
Caffe的网络定义
Caffe中的网络都是有向无环图的集合,可以直接定义:
name:"dummy-net"
layers {name: "data" …}
layers {name: "conv" …}
layers {name: "pool" …}
layers {name: "loss" …}
数据及其导数以blobs的形式在层间流动。
Caffe的各层定义
Caffe层的定义由2部分组成:层属性与层参数,例如
name:"conv1"
type:CONVOLUTION
bottom:"data"
top:"conv1"
convolution_param{
num_output:20
kernel_size:5
stride:1
weight_filler{
type: "xavier"
}
}
这段配置文件的前4行是层属性,定义了层名称、层类型以及层连接结构(输入blob和输出blob);而后半部分是各种层参数。
Blob
Blob是用以存储数据的4维数组,例如
对于数据:Number*Channel*Height*Width
对于卷积权重:Output*Input*Height*Width
对于卷积偏置:Output*1*1*1
训练网络
网络参数的定义也非常方便,可以随意设置相应参数。
甚至调用GPU运算只需要写一句话:
solver_mode:GPU
Caffe的安装与配置
Caffe需要预先安装一些依赖项,首先是CUDA驱动。不论是CentOS还是Ubuntu都预装了开源的nouveau显卡驱动(SUSE没有这种问题),如果不禁用,则CUDA驱动不能正确安装。以Ubuntu为例,介绍一下这里的处理方法,当然也有其他处理方法。
在sudo vi/etc/modprobe.d/blacklist.conf 增加一行 :blacklist nouveau sudoapt-get --purge remove xserver-xorg-video-nouveau #把官方驱动彻底卸载: sudoapt-get --purge remove nvidia-*#清除之前安装的任何NVIDIA驱动 sudo service lightdm stop#进命令行,关闭Xserver sudokill all Xorg
安装了CUDA之后,依次按照官网提示(http://caffe.berkeleyvision.org/installation.html )安装BLAS、OpenCV、Boost即可。
Caffe跑跑MNIST试试
在Caffe安装目录之下,首先获得MNIST数据集:
#cddata/mnist #sh get_mnist.sh生成mnist-train-leveldb/ 和 mnist-test-leveldb/,把数据转化成leveldb格式:
# cdexamples/lenet #sh create_mnist.sh
训练网络:
</pre><pre name="code" class="cpp">#sh train_lenet.sh