Apriori关联分析算法 -尿布与啤酒的故事

关联分析旨在发现物品之间的潜在关系,通过寻找频繁项集(如超市中的{啤酒,尿布},{鸡蛋,牛奶}等)并基于关联规则确定物品关联。Apriori算法利用支持度和置信度这两个关键指标来衡量关联强度,支持度表示物品流行程度,置信度表示购买A物品后购买B物品的概率。算法中利用Apriori性质减少计算量,加速频繁项集的查找过程。" 114642992,10206262,OpenStack环境配置实战指南,"['Linux', 'CentOS', 'OpenStack', '数据库', '消息队列']
摘要由CSDN通过智能技术生成

✴关联分析概述

选择物品间的关联规则也就是要寻找物品之间的潜在关系。要寻找这种关系,有两步,以超市为例

  1. 找出频繁一起出现的物品集的集合,我们称之为频繁项集。比如一个超市的频繁项集可能有{ {啤酒,尿布},{鸡蛋,牛奶},{香蕉,苹果}}
  2. 在频繁项集的基础上,使用关联规则算法找出其中物品的关联结果。

简单点说,就是先找频繁项集,再根据关联规则找关联物品。
---------------------------------------------------------------------------------------------------------------------------------

找关联的时候主要有两个阈值进行参考:

1、支持度(Support):支持度可以理解为物品当前流行程度。

支持度 = (包含物品A的记录数量) / (总的记录数量)

2、置信度(Confidence):置信度是指如果购买物品A,有较大可能购买物品B。

置信度( A -> B) = (包含物品A和B的记录数量) / (包含 A 的记录数量)

e.g.  产品A作为分母,A出现的次数多,支持度就会高。A出现的次数多的同时AB一起出现的次数也多,那么这一个关联的置信度就高了!!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值