如何用Python挖掘“啤酒和尿布”的关系?(Apriori算法挖掘关联规则)

一、什么是关联规则挖掘?

“啤酒与尿布”的故事大家都听过吧,一些年轻的父亲在去超市给孩子买尿布的时候,会顺便给自己买点啤酒,超市发现这个规律之后,就把啤酒和尿布的货架放在一起,这次改动明显增加了超市的销售额。
啤酒和尿布两者之间就存在着关联规则。
那么学会挖掘这些关联规则,用处是非常大的。

二、规则度量:支持度和置信度

支持度就是两个事务同时发生的概率。
s u p p o r t ( A , B ) = P ( A B ) support(A, B) = P(A B) support(A,B)=P(AB)

[注1]   ~   P ( A B ) P(AB) P(AB)就是A和B同时出现的概率。(下同)

置信度就是
c o n f i d e n c e ( A ⇒ B ) = P ( B ∣ A ) = P ( A B ) / P ( A ) confidence(A\Rightarrow B)=P(B|A)=P(AB)/P(A) confidence(AB)=P(BA)=P(AB)/P(A)
举个栗子
路人甲购买了:商品A、B、C;
炮灰乙购买了:商品A、C;
流氓丙购买了:商品A、D;
土匪丁购买了:商品B、E、F。
s u p p o r t ( A , B ) = P ( A B ) = 1 / 4 = 0.25 support(A, B) = P(A B)=1/4=0.25 support(A,B)=P(AB)=1/4=0.25
s u p p o r t ( A , C ) = P ( A C ) = 2 / 4 = 0.5 support(A, C) = P(AC)=2/4=0.5 support(A,C)=P(AC)=2/4=0.5
c o n f i d e n c e ( A ⇒ B ) = P ( B ∣ A ) = P ( A B ) / P ( A ) = 1 / 3 confidence(A\Rightarrow B)=P(B|A)=P(AB)/P(A)=1/3 confidence(A

尿布啤酒的故事 这是一个老故事, 但每次看总是能从中想到点什么.在一家超市里,有一个有趣的现象:尿布啤酒赫然摆在一起出售。但是这个奇怪的举措却使尿布啤酒的销量双双增加了。这不是一个笑话,而是发生在美国沃尔玛连锁店超市的真实案例,并一直为商家所津津乐道。原来,美国的妇女们经常会嘱咐她们的丈夫下班以后要为孩子买尿布。而丈夫在买完尿布之后又要顺手买回自己爱喝的啤酒,因此啤酒尿布在一起购买的机会还是很多的。 是什么让沃尔玛发现了尿布啤酒之间的关系呢? 研究“啤酒尿布”关联的方法就是购物篮分析,购物篮分析曾经是沃尔玛秘而不宣的独门武器,购物篮分析可以帮助我们在门店的销售过程中找到具有关联关系的商品,并以此获得销售收益的增长! 商品相关性分析是购物篮分析中最重要的部分,购物篮分析英文名为market basket analysis(简称MBA,当然这可不是那个可以用来吓人的学位名称)。在数据分析行业,将购物篮的商品相关性分析称为“数据挖掘算法之王”,可见购物篮商品相关性算法吸引人的地方,这也正是乐此不疲的围绕着购物篮分析进行着研究和探索的根本原因。 下面每一行是一个购物小票,直到遇到五个零00000,输入序列终止,每个字母表示一种商品(字母区分大小写,即a 和A代表不同的产品),请分析哪两个种产品的销售相关性最高: 样例输入: AABZXY BMNY CD CBYPQ BWVCY 00000 输出(字幕顺序按ASC码升序排列): BY
评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值