题目描述
验证给定的字符串是否可以解释为十进制数字。
例如:
"0" => true
" 0.1 " => true
"abc" => false
"1 a" => false
"2e10" => true
" -90e3 " => true
" 1e" => false
"e3" => false
" 6e-1" => true
" 99e2.5 " => false
"53.5e93" => true
" --6 " => false
"-+3" => false
"95a54e53" => false
我们有意将问题陈述地比较模糊。在实现代码之前,你应当事先思考所有可能的情况。这里给出一份可能存在于有效十进制数字中的字符列表:
数字 0-9
指数 - "e"
正/负号 - "+"/"-"
小数点 - "."
有限自动状态机
本题可以采用《编译原理》里面的确定的有限状态机(DFA)解决。构造一个DFA并实现,构造方法可以先写正则表达式,然后转为 DFA,也可以直接写,我就是直接写的,虽然大概率不会是最简结构(具体请参考《编译器原理》图灵出版社),不过不影响解题。DFA 作为确定的有限状态机,比 NFA 更加实用,因为对于每一个状态接收的下一个字符,DFA 能确定唯一一条转换路径,所以使用简单的表驱动的一些方法就可以实现,并且只需要读一遍输入流,比起 NFA 需要回读在速度上会有所提升。
构建出来的状态机如封面图片所示(红色为 终止状态,蓝色为 中间状态)。根据《编译原理》的解释,DFA 从状态 0 接受串 s 作为输入。当s耗尽的时候如果当前状态处于中间状态,则拒绝;如果到达终止状态,则接受。
然后,根据 DFA 列出如下的状态跳转表,之后我们就可以采用 表驱动法 进行编程实现了。需要注意的是,这里面多了一个状态 8,是用于处理串后面的若干个多余空格的。所以,所有的终止态都要跟上一个状态 8。其中,有一些状态标识为-1,是表示遇到了一些意外的字符,可以直接停止后续的计算。状态跳转表如下:
状态图:
代码实现
class Solution {
public int make(char c) {
switch(c) {
case ' ': return 0;
case '+':
case '-': return 1;
case '.': return 3;
//不同的地方在于少了一个'E'
case 'e': return 4;
default:
if(c >= 48 && c <= 57) return 2;
}
return -1;
}
public boolean isNumber(String s) {
int state = 0;
int finals = 0b101101000;
int[][] transfer = new int[][]{{ 0, 1, 6, 2,-1},
{-1,-1, 6, 2,-1},
{-1,-1, 3,-1,-1},
{ 8,-1, 3,-1, 4},
{-1, 7, 5,-1,-1},
{ 8,-1, 5,-1,-1},
{ 8,-1, 6, 3, 4},
{-1,-1, 5,-1,-1},
{ 8,-1,-1,-1,-1}};
char[] ss = s.toCharArray();
for(int i=0; i < ss.length; ++i) {
int id = make(ss[i]);
if (id < 0) return false;
state = transfer[state][id];
if (state < 0) return false;
}
return (finals & (1 << state)) > 0;
}
}
转载自:
作者:user8973
链接:https://leetcode-cn.com/problems/valid-number/solution/biao-qu-dong-fa-by-user8973/