模糊矩阵的乘法运算不同于普通的矩阵相乘,实质为取大取小运算。详细内容请查阅模糊数学相关书籍。
附上矩阵乘法代码:
Mat VagueMul(Mat& Q, Mat&R)
{
//Mat Q = (Mat_<float>(4,3)<< 0.3, 0.7, 0.2, 1, 0, 0.4, 0, 0.5, 1, 0.6, 0.7, 0.8 );
//Mat R = (Mat_<float>(3,2)<< 0.1, 0.9, 0.9, 0.1, 0.6, 0.4);
Mat VagueMat(Q.rows, R.cols, CV_32FC1);
vector<float> tmpFloatVector;
for (int i = 0; i < Q.rows; i++)
{
float* QData = Q.ptr<float>(i);
float* VagueData = VagueMat.ptr<float>(i);
for (int j = 0; j < R.cols; j++)
{
for (int k = 0; k < Q.cols; k++ )
{
tmpFloatVector.push_back(min(QData[k], R.ptr<float>(k)[j]));
}
VagueData[j] = *max_element(tmpFloatVector.begin(), tmpFloatVector.end());
tmpFloatVector.clear();
}
}
return VagueMat;
}
上述代码并不简洁,实际中的模糊相似矩阵往往为方阵,每次只需要计算上三角(或下三角),仅供参考。
转载请注明出处。