#模糊相似矩阵到模糊等价矩阵(opencv实现)

模糊矩阵的乘法运算不同于普通的矩阵相乘,实质为取大取小运算。详细内容请查阅模糊数学相关书籍。

附上矩阵乘法代码:

Mat VagueMul(Mat& Q, Mat&R)
{
	//Mat Q = (Mat_<float>(4,3)<< 0.3, 0.7, 0.2,   1, 0, 0.4,  0, 0.5, 1,    0.6, 0.7, 0.8 );
	//Mat R = (Mat_<float>(3,2)<< 0.1, 0.9, 0.9, 0.1, 0.6, 0.4);
	Mat VagueMat(Q.rows, R.cols, CV_32FC1);
	vector<float> tmpFloatVector;
	for (int i = 0; i < Q.rows; i++)
	{
		float* QData = Q.ptr<float>(i);
		float* VagueData = VagueMat.ptr<float>(i);
		for (int j = 0; j < R.cols; j++)
		{	
			for (int k = 0; k < Q.cols; k++ )
			{
				tmpFloatVector.push_back(min(QData[k], R.ptr<float>(k)[j]));
			}
			VagueData[j] = *max_element(tmpFloatVector.begin(), tmpFloatVector.end()); 
			tmpFloatVector.clear();
		}
	}
	return VagueMat;
}

上述代码并不简洁,实际中的模糊相似矩阵往往为方阵,每次只需要计算上三角(或下三角),仅供参考。

转载请注明出处。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

呦看清三五魔芋

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值