彻底理解施密特正交化

在游戏编程中我们经常会用到施密特正交化,比如求解法线的切空间,我们需要把一组非正交的坐标系(NBT),转换为正交的坐标系(N B’ T’)。

施密特正交化如何理解呢?我们先来看看官方给出的解释。

施密特正交化(Schmidt orthogonalization)是求欧氏空间正交基的一种方法。从欧氏空间任意线性无关的向量组α1,α2,……,αm出发,求得正交向量组β1,β2,……,βm,使由α1,α2,……,αm与向量组β1,β2,……,βm等价,再将正交向量组中每个向量经过单位化,就得到一个标准正交向量组,这种方法称为施密特正交化。

第一个问题什么是欧式空间?

游戏中所有向量的运算都是在欧式空间中,也就初中,高中学的向量空间都是欧式空间。

从起源来讲,欧式空间是满足欧几里得《几何原本》中几何五公理的空间。维基百科中给出的解释如下:

1. 从一点向另一点可以引一条直线。
2. 任意线段能无限延伸成一条直线。
3. 给定任意线段,可以以其一个端点作为圆心,该线段作为半径作一个圆。
4. 所有直角都相等。
5. 若两条直线都与第三条直线相交,并且在同一边的内角之和小于两个直角,则这两条直线在这一边必定相交。

第二个问题什么是线性无关向量组?

如果有向量组a1,a2,a3,...an,给定方程k1*a1+k2*a2+k3*a3+...+kn*an = 0,只存在唯一的一组解k1=k2=...=kn=0。那么该组向量就是线性无关向量组。

几何意义就是如果是二维向量组a1,a2,那么只要a1和a2不共边,他们就是线性无关向量组。

k1*a1 + k2*a2 = 0。假定a1和a2不是零向量且不共边,那么只有k1=k2=0,让a1和a2变成零向量,他们相加才会得0。否则两个非零且不共边的向量相加一定会得出一个新的非零向量。

共边向量相加可以得出零向量,比如两个方向相反且模一样的向量相加。

如果是三维向量组a1,a2,a3不共面,他们就是线性无关向量组。

如果a1,a2,a3共面的话根据共面向量定理a3 = x * a1 + y * a2。一定存在有序实数解x,y。

使得 x * a1 + y * a2 - a3 = 0。k1=x,k2 = y,k3 = -1。所以三个向量如果共面的话一定是线性相关的向量组。

如果三个向量不共面并且都不为零向量,那么他们相加一定会得出一个新的非零向量。所以只有通过k1=k2=k3=0,让a1,a2,a3变成零向量以后相加才能等于0。所以他们是线性无关向量组。

扩展到n维空间,也就是说如果一个向量组线性无关,那么其中任何一个向量都不能被其他向量线性表示。

比如在二维空间如果两个向量共边,那么这两个向量就可以乘以一个k来表示另外一个向量。

如果在三维空间如果三个向量共面,那么就存在一组有序的实数(x,y)分别乘上两个向量来表示另外一个向量。

换句话说向量组中的每个向量都是不能被其他向量替代的,那么这组向量就是线性无关向量。

接下来我们看看施密特正交化定义。

给定一组线性无关的向量组α1,α2,……,αm。根据这组向量我们其实可以定义一个m维的空间坐标系。只不过他们不是两两正交的坐标系。我们希望通过施密特正交化,求出一组正交坐标系β1,β2,……,βm,使得这两组坐标系等价。

什么是向量组等价,两个向量组可以互相线性表示。我们就说这两个向量组等价。下面我们给出施密特正交化的公式。

给定一组线性无关向量组{v0,...vn},我们通过施密特正交化将其转换为一组正交化向量组{w0,...wn}的步骤是:

公式看上去很复杂,理解其中的几何意义后就不复杂了。

已知一个向量v和一个单位向量n,那么向量v在单位向量n上的投影向量就是这两个向量的点积

如果向量n不是单位向量,我们只需要把n变成单位向量即可,那么向量v在向量n上的投影向量为

向量w = v-p就能得到一个垂直的向量w。

对于二维空间中v0,v1它的正交向量组w0,w1就是。

 

三维向量同理附上一张贴图方便理解

 

以此类推就能理解斯施密特正交化的过程了。

 

 

 

 

 

 

### 施密特正交化的概念 施密特正交化是一种将一组线性无关的向量转换为一组相互正交的向量的方法。这种方法广泛应用于数值分析和科学计算领域,尤其是在处理矩阵分解时非常有用。通过该方法获得的一组正交向量可以进一步标准化为单位长度,从而形成标准正交基。 在实际应用中,施密特正交化常用于构建正交矩阵 \( Q \),这是许多重要算法(如 QR 分解)的基础之一[^1]。 --- ### 使用 Python 实现施密特正交化 #### 方法概述 为了实现施密特正交化,可以通过以下步骤完成: 1. 遍历输入向量集合中的每一个向量。 2. 对于当前向量,依次减去其在已经正交化向量上的投影分量。 3. 将最终得到的结果作为新的正交向量并存储起来。 这一过程可以用 NumPy 库高效实现。下面是具体的代码示例: ```python import numpy as np def gram_schmidt(vectors): """ 使用施密特正交化方法对一组向量进行正交化 参数: vectors (list of array-like): 输入的一组线性无关向量列表 返回: list of ndarray: 正交化后的向量列表 """ orthogonal_vectors = [] # 存储正交化后的向量 for v in vectors: v_copy = np.copy(v) # 创建当前向量的副本以避免修改原始数据 # 减去当前向量在已有正交向量上的投影 for u in orthogonal_vectors: u_unit = u / np.linalg.norm(u) # 单位化现有正交向量 projection = np.dot(v_copy, u_unit) * u_unit # 投影到现有正交向量上 v_copy -= projection # 更新当前向量 orthogonal_vectors.append(v_copy) # 添加正交化后的向量 return orthogonal_vectors # 测试代码 if __name__ == "__main__": # 定义一组线性无关的向量 input_vectors = [ np.array([1, 1, 0]), np.array([0, 1, 1]), np.array([1, 0, 1]) ] # 执行施密特正交化 result = gram_schmidt(input_vectors) print("正交化后的向量:") for vec in result: print(vec) ``` 上述代码实现了基于施密特正交化的逻辑,并能够接受任意数量的线性无关向量作为输入[^5]。 --- ### 结果验证与注意事项 运行以上代码后,会输出经过正交化处理的新向量集。需要注意的是,由于浮点数运算的存在,某些语言或工具可能会引入微小的舍入误差[^3]。因此,在实际操作过程中应考虑这些潜在的影响。 如果希望进一步规范化所得向量,则可以在每一步之后将其除以其模长,使得所有向量都成为单位向量。 --- ###
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值