平面方程有四种表达方式分别是:截距式,点法式,一般式,法线式。
1.点法式
A(x-x0)+B(y-y0)+C(z-z0)=0
假设n=(A,B,C)为平面的法向量,M=(x,y,z)为平面上任意一点,M'=(x0,y0,z0),则有n·MM'=0,则有A(x-x0)+B(y-y0)+C(z-z0)=0
2.一般式
Ax+By+Cz+D=0
由点法式推出A*x + B*y + C*z - A*x0 - B*y0 - C*z0 = 0 令D = - A*x0 - B*y0 - C*z0即推导出一般式
3.截距式
设平面方程为Ax+By+Cz+D=0,若D不等于0,取a=-D/A,b=-D/B,c=-D/C,则得平面的截距式方程:x/a + y/b + c/z = 1
平面与三个轴的坐标分别为P(a,0,0),Q(0,b,0),R(0,0,c),其中,a,b,c依次称为该平面在x,y,z轴上的解距。
推导过程很简单平面与x轴的交点就是令y=0,z=0,所以a= -D/A,以此类推出b=-D/B,c=-D/C。
4.法线式
xcosα + ycosβ + zcosγ = d 其中cosα、cosβ、cosγ是平面法向量的方向余玹,p为原点到平面的距离。其中cosα²+cosβ²+cosγ²=1
假设原点到平面的法线为on,平面上任意一点p(x,y,z),平面上一点p₀,(x₀,y₀,z₀),则有on·pp₀ = 0。
pp₀ = op - op₀,则on·op - on·op₀ = 0
假设on₀的的单位法向量为(cosα,cosβ,cosγ)且 cosα²+cosβ²+cosγ²=1则on·op - on·op₀ = on₀·op - on₀·op₀
其中on₀·op₀ = d 并且 on₀·op = xcosα + ycosβ + zcosγ 所以xcosα + ycosβ + zcosγ = d