5.8 Pytorch Softmax函数讲解

本文介绍了Pytorch中的Softmax函数,它用于计算输入属于各类别的概率,使得某一类别的概率接近1,其他类别接近0。Softmax通过exp和归一化实现,常与交叉熵损失函数结合用于深度学习模型的训练。文中还提及了Softmax的接口及其实现代码。
摘要由CSDN通过智能技术生成
  1. 什么是softmax

如果判断输入属于某一个类的概率大于属于其他类的概率,那么这个类对应的值就逼近于1,其他类就逼近于0.

  Softmax=exp(logits)/reduce_sum(exp(logits),dim)

  1. Softmax原理

在网络模型中,我们把等式两点都进行Ln运算,这样,进行ln运算后属于y1类的概率就可以转化为:ln运算后的x1满足某个条件的概率加上ln运算后的x2满足某个条件的概率。这样y1=x1w11+x2w12等于ln运算后的y1的概率了。

  1. Softmax的接口

Softmax接口

描述

torch.nn.Softmax()

计算Softmax,参数dim表示计算的维度

torch.nn.Softmax2d()

对每个图片进行Softmax处理

torch.nn.LogSoftmax(logits,name=None)

对Softmax取对数,常与NLLLoss联合使用,实现交叉熵损失的计算

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值