语义分割进阶之路之回首CVPR2016(三)

该论文提出了一种名为Gaussian Mean Field (GMF)网络的深度模型,用于语义分割任务,替代传统的离散CRF。GMF网络通过平均场推断在高斯CRF上运行,每层输出更接近最大后验解。结合CNN,形成端到端的高斯条件随机场网络,在PASCALVOC 2012数据集上表现优越。
摘要由CSDN通过智能技术生成

Gaussian Conditional Random Field Network for Semantic Segmentation. 

Raviteja Vemulapalli, Oncel Tuzel, Ming-Yu Liu, Rama Chellapa

 

这篇论文很有意义的,我们知道2015的cvpr对语义分割的方法局限于,场\概率、超像素、FCN这三种

本文就是在“场”这个方向进发,涉及了很多“场”的问题。使用了GCRF代替CRF,并且他自己设计了一套流程听说效果是很不错的。

 

abstract
In contrast to the existing approaches that use discrete Conditional Random Field (CRF) models, we propose to use a Gaussian CRF model for the task of semantic segmentation. We propose a novel deep network, which we refer to as Gaussian Mean Field (GMF) network, whose layers perform mean field inference over a Gaussian CRF. The proposed GMF network has the desired property that each of its layers produces an outp

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值