import numpy as np
from scipy.stats import pearsonr
import matplotlib.pyplot as plt
from scipy.stats import norm
def data_analysis(data,type):
'''
:param data: 输入数据
:param type: 算法名称 correlation p_value baseInfo std quartile percentile consistency(一致性) distribution(数据分布)
:return: 字典形式结果
'''
# 相关性和p_value
if type=="correlation" or type == "p_value" :
correlation, p_value = pearsonr(data[0], data[1])
returt = {type: eval(type)}
# 基础统计包括大小均值,标准差
if type == "baseInfo":
max = np.nanmax(data)
min = np.nanmin(data)
mean = np.nanmean(data)
sum = np.nansum(data)
returt = {'max': max, 'min': min, 'mean':mean, 'sum': sum}
# 标准差
if type == "std":
std = np.nans
一些重要的数据统计函数
最新推荐文章于 2023-06-29 20:10:08 发布
本文深入探讨了数据统计中常用的一些关键函数,包括平均数、中位数、众数、标准差和方差等,旨在帮助读者更好地理解和应用这些工具进行数据分析。
摘要由CSDN通过智能技术生成