一些重要的数据统计函数

本文深入探讨了数据统计中常用的一些关键函数,包括平均数、中位数、众数、标准差和方差等,旨在帮助读者更好地理解和应用这些工具进行数据分析。
摘要由CSDN通过智能技术生成
import numpy as np
from scipy.stats import pearsonr
import matplotlib.pyplot as plt
from scipy.stats import norm



def data_analysis(data,type):
    '''

    :param data: 输入数据
    :param type: 算法名称 correlation p_value baseInfo std quartile percentile consistency(一致性) distribution(数据分布)
    :return: 字典形式结果
    '''


    # 相关性和p_value
    if type=="correlation" or type == "p_value" :

        correlation, p_value = pearsonr(data[0], data[1])

        returt = {type: eval(type)}


    # 基础统计包括大小均值,标准差
    if type == "baseInfo":
        max = np.nanmax(data)
        min = np.nanmin(data)
        mean = np.nanmean(data)
        sum = np.nansum(data)
        returt = {'max': max, 'min': min, 'mean':mean, 'sum': sum}

    # 标准差
    if type == "std":
        std = np.nans
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值