二水平析因设计的1/4分式设计

本文是实验设计与分析(第6版,Montgomery著傅珏生译)第8章2水平分式设计第8.3节的python解决方案。本文尽量避免重复书中的理论,着于提供python解决方案,并与原书的运算结果进行对比。您可以从Detail 下载实验设计与分析(第6版,Montgomery著傅珏生译)电子版。本文假定您已具备python基础,如果您还没有python的基础,可以从Detail 下载相关资料进行学习。

对中等大的因子个数,常用2k设计的较小的分式设计。考虑2k设计的1/4分式设计。此设计包含2k-2个试验,通常叫做2k-2分式析因设计。

2k-2设计的构造方法是,首先写出k一2个因子的完全析因设计的试验组成的基本设计,然后再加上两列,这两列由开头的k一2个因子的拾当交互作用组成的。这样一来,2k-2设计的1/4分式设计有两个生成元。如果P和Q代表选取的生成元,则,I=P和I=Q叫做此设计的生成关系(generating relation)。P和Q的符号(+或者-)决定了采用哪一种l/A分式,与生成元±P和±Q的选择有关的所有4个分式是同一族的成员。P和Q都是正的那个分式是主分式。

     所有等于单位列I的列组成设计的完全定义关系。这由P,Q,以及它们的广义交互作用PQ所组成,也就是说,定义关系是I=P=Q=PQ,称元素P,Q,PQ为定义关系词。任一效应的别名可由效应所在的列乘以定义关系的每个词而得。显然,每一效应有3个别名,实验者要谨慎地选择生成元以避免可能重要的效应相互为别名,作为例子,考虑26--2设计。设选取了I=ABCE和I=BCDF为设计的生成元。生成元ABCE和BCDF的广义交互作用是ADEF,因此,此设计的完全定义关系是

                I=ABCE-BCDF=ADEF

从而,此设计分辨度为V。为求得任一效应(例如A)的别名,将此效应与定义关系的每个词相乘即可。对于A,得

              A=BCE-ABCDF=DEF

容易证明,每个主效应的别名是三因子交互作用和五因子交互作用,二因子交互作用的别名是另一个二因子交互作用或更高阶交互作用。于是,估计A时,我们实际上是估计A十BCE+DEF+ABCDF,此设计的全部别名结构见表8.8。如果三因子和更高阶的交互作用可被忽路,则此设计给出了主效应的纯净估计量

    要构造此设计,首先写出基本设计,它由以A,B,CD为因子的完全26-2=2设计的16个试验所组成。然后加上两个因子E和F,它们的水平分别由交互作用ABC和BCD的加减符号所决定。此方法见表8.9。

    构造此设计的另一方法是,先使ABCE和BCDF与区组相混,导出26设计的4个区组,然后选取处理组合在ABCE和BCDF上都为正的区组,这就得出生成关系为I=ABCE和I=BCDF的26-2分式析因设计,因为生成元ABCE和BCDF都是正的,这就是主分式。

     当然,此26-2设计还有3个备选分式设计。它们是生成关系I=ABCE和I=一BCDF,I=-ABCE和I=BCDF,I=-ABCE和I=-BCDF的分式设计。这些分式设计容易

用表8.9所示的方法构成。例如,如果要求出I=ABCE和I=-BCDF的分式设计,则在表8.9的最后一列令F=-BCD,因子F这一列的水平变成

              ++----++--++++--

此备选分式设计的完全定义关系是I=ABCE=-BCDF=-ADEF。表8.9中别名结构的

某些符号现在更改了,例如,A的别名是A=BCE=-DEF=一ABCDF。这样一来,观测值的线性组合[A]实际上是估计A+BCE-DEF-ABCDF。

最后,26-2IV分式析因设计可压缩为由4个因子构成的任一子集的单次重复的24设计,只要这一子集不是定义关系中的一个词即可,也可以压缩为由4个因子构成的任一子集的有重复的24设计的1/2分式设计,只要那一子集是定义关系中的一个词就行。如此,表8.9的设计就变成以因子A,B,C,E,或B,C,D,F,或A,D,E,F构成的有两次重复的2-1分式析因设计,因

为那些因子正是定义关系的词。6个因子还有另外12个组合,比如ABCD,ABCF,等等,它们是此设计在单次重复的2设计上的投影。此设计还可压缩为由6个因子的任意3个组成的有4次重复的23设计,或由两个因子组成的有4次重复的22设计。

    一般说来,任一2k-2分式析因设计可以压缩为由原来的因子的r≤k-2个元素的某一子集构成的完全析因设计或分式析因设计,构成完全析因设计的那些变量的子集不是完全定义关系中的词。

例8.4在注塑成型生产线上制造的零件显得过度收缩。这是在装配时发现的,寻根探源是由注塑成型工序引起的。质量改进小组决定用实验设计去研究注塑成型生产过程,以破小收缩率。小组决定研究6个因--成型湿度(A),螺杆转速〔B),保持时间(C),循环时间(D),射口大小(E),保压压力(F)--每个因子取两个水平。研究的目的是弄清每个因子是怎样影响收缩量的,因子的交互作用怎么样。

小组决定用表8.9的有16个试验的二水平分式析因设计。此设计再度列于表8.10中,在做设计的16个试验的每一个试验时,测试生产零件得到观测的收缩量(×10)也一起列在该表中。表8.11列出了该实验的效应估计、平方和以及回归系数。

from pyDOE2 import *

import statsmodels.formula.api as smf

import pandas as pd

import statsmodels.api as sm

from sklearn import linear_model

import seaborn as sns

import matplotlib.pyplot as plt

mydoe=fracfact('a b c d abc bcd')

y =[6,10,32,60,4,15,26,60,8,12,34,60,16,5,37,52]

df =pd.DataFrame(mydoe)

df['y']=y

model = smf.ols('df.y~df[0]+df[1]+df[2]+df[3]+df[4]+df[5]+df[0]:df[1]+df[0]:df[2]+df[0]:df[3]+df[1]:df[2]+df[1]:df[3]+df[2]:df[3]', data=df).fit()

#model = smf.ols('df.Viscosity ~ df.Temperature + df.Rate + df.Temperature:df.Rate', data=df).fit()

print(model.summary2())

                Results: Ordinary least squares

=================================================================

Model:              OLS              Adj. R-squared:     0.927

Dependent Variable: df.y             AIC:                100.1884

Date:               2024-04-25 14:25 BIC:                110.2320

No. Observations:   16               Log-Likelihood:     -37.094

Df Model:           12               F-statistic:        16.97

Df Residuals:       3                Prob (F-statistic): 0.0196

R-squared:          0.985            Scale:              32.229

------------------------------------------------------------------

               Coef.   Std.Err.     t     P>|t|    [0.025   0.975]

------------------------------------------------------------------

Intercept     27.3125    1.4193  19.2441  0.0003  22.7958  31.8292

df[0]          6.9375    1.4193   4.8881  0.0164   2.4208  11.4542

df[1]         17.8125    1.4193  12.5505  0.0011  13.2958  22.3292

df[2]         -0.4375    1.4193  -0.3083  0.7781  -4.9542   4.0792

df[3]          0.6875    1.4193   0.4844  0.6613  -3.8292   5.2042

df[4]          0.1875    1.4193   0.1321  0.9033  -4.3292   4.7042

df[5]          0.1875    1.4193   0.1321  0.9033  -4.3292   4.7042

df[0]:df[1]    5.9375    1.4193   4.1835  0.0249   1.4208  10.4542

df[0]:df[2]   -0.8125    1.4193  -0.5725  0.6071  -5.3292   3.7042

df[0]:df[3]   -2.6875    1.4193  -1.8936  0.1546  -7.2042   1.8292

df[1]:df[2]   -0.9375    1.4193  -0.6606  0.5561  -5.4542   3.5792

df[1]:df[3]   -0.0625    1.4193  -0.0440  0.9676  -4.5792   4.4542

df[2]:df[3]   -0.0625    1.4193  -0.0440  0.9676  -4.5792   4.4542

-----------------------------------------------------------------

Omnibus:               23.464       Durbin-Watson:          3.225

Prob(Omnibus):         0.000        Jarque-Bera (JB):       2.493

Skew:                  -0.000       Prob(JB):               0.287

Kurtosis:              1.066        Condition No.:          1

=================================================================

Notes:

[1] Standard Errors assume that the covariance matrix of the

errors is correctly specified.

print(model.params)

anovatable=sm.stats.anova_lm(model)

anovatable

此实验的效应估计值的正态制率图见图8.12,较大的效应只有A(成型温度),B(螺杆转速),以及AB的交互作用。看一下表8.8的别名关系,暂时接受这些结论看来是合理的。图8.13的AB交互作用图表明:当螺杆转速处于低水平时,生产过程对温度很不做感;当螺杆转速处于高水平时,对温度十分敏感。当螺杆转速为低水平,则不管温度运什么水平,得到的平均收缩率约为10%。

据此初步分析,小组决定成型温度与螺杆转速都用低水平。这组条件使零件的平均收缩率减至大约10%。但是,零件之间收缩率的变异性仍然是一个句题。实际上,用上述的调整方法,平均收缩率可近当减少。然而,零件问收缩率的变异性可能还会在装配上引起问题.解决句题的一个办法是,看一下有无因子影响零件收缩率的变异性。

图8.14是残差的正态概率图。此图令人满意。然后作出残差与每个因子的关系图。图8.15是这些图之一,残差与因子C(保持时同)的关系图。此图表明,残差在保持时间处于低水平时远没有处于高水平时那样分散,这些残差是按常规方法从收缩率的顶测模型求得的。因为预测的收缩率

其中x1,x2,x1x2是规范变量,分别对应于因子A,因子B,以及AB交互作用,于是残差为

               

用来产生残差的回归模型实质上是从数据中消除了A,B,AB的位置效应,因此,残差包含有未加说明的变异性信息。图8.15表明,变异性中有一定的模式,当保持时间处于低水平时,零件收缩率的变异性较小,〔请回忆在第6章我们看到的,当位置或均值模型是正确时残差只是反映关于分散效应的信息)

更为详细的残差分析如表8.12所示。此表列出了每个因子低水平(-)和高水平(+)处的残差,并计算出了每个因子低水平和高木平处的残差的标准差。C处于低水平时的残差标准差[S(C-)=1.63]明显小于C处于高水平时的残差标准差[S(C+)=5.70]。

    表8.12下面一行表示统计量

                     

我们知道,如某因子i处于高(+)水平和低(-)水平时,残差的方差相符,则此比值近似服从均值为零的正态分布,所以可用它来判断因子i处于两个水平时响应变异性的差异,因为比值F*C相对较大,我们的结论是,从图8.15观测到的分散效应或变异性效应是真实的。这样一来,在生产中,使保持时间处于低水平就会减少零件之间收缩率的变异性。图8.16是表8.12的F*i值的正态概率图,此图也显示出因子C有较大的分散效应。

    图8.17显示了此实验中的数据投影到因子A,B,C的立方体上。收缩率观测值的平均值和极差都在立方体的每个角点上标出。审查一下这张图就会看到,进行生产时,使螺杆转速(B)处于低水平,是减少零件平均收缩率的关键。实际上,当B处于低水平时,温度(A)和保特时间(C)的任一组合都会使零件的平均收缩率取小的数值。不过,检查一下立方体每个角点上收缩率的极差,就会马上看到,如果在生产时想要保持零件之间收缩率变异性取低值的话,使保持时间(C)处于低水平是唯一合理的选择。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

lishaoan77

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值