loj6017/bzoj4161 线性齐次递推多项式取模优化

显然强大的Rayment已经讲得很清楚了:这里

因为这东西我可能明天就忘了,所以写一下。

所谓线性齐次递推,就是 h n = a 1 h n − 1 + a 2 h n − 2 + . . . + a k h n − k h_n=a_1h_{n-1}+a_2h_{n-2}+...+a_kh_{n-k} hn=a1hn1+a2hn2+...+akhnk这种形式的递推关系。

矩阵快速幂显然是可以做的对吧,但是复杂度是 O ( k 3 log ⁡ n ) O(k^3 \log n) O(k3logn)的,不够优秀。

大概就是构造一个多项式 g ( x ) = x k − ∑ i = 1 k a i x k − i g(x)=x^k-\sum_{i=1}^ka_ix^{k-i} g(x)=xki=1kaixki a a a是美丽的转移系数)(这个多项式就是转移矩阵的特征多项式,即 ∣ x I − A ∣ |xI-A| xIA)。对于线性齐次递推的转移矩阵 A A A,设有 A n − k + 1 = g ( A ) p ( A ) + r ( A ) A^{n-k+1}=g(A)p(A)+r(A) Ank+1=g(A)p(A)+r(A),又由于 g ( A ) = 0 g(A)=0 g(A)=0所以 A n − k + 1 = r ( A ) A^{n-k+1}=r(A) Ank+1=r(A)

由于已知 r ( x ) = x n − k + 1   m o d   g ( x ) r(x)=x^{n-k+1} \bmod g(x) r(x)=xnk+1modg(x),而 x t   m o d   g ( x ) = ( x t 2 m o d    g ( x ) ) 2 m o d    g ( x ) x^t \bmod g(x)=(x^{\frac{t}{2}} \mod g(x))^2 \mod g(x) xtmodg(x)=(x2tmodg(x))2modg(x),所以可以用类似快速幂的方法搞这个东西,得到多项式 r r r的系数。

那么有 A n − k + 1 = ∑ i = 0 k − 1 r i A i A^{n-k+1}=\sum_{i=0}^{k-1}r_iA^i Ank+1=i=0k1riAi,两边同时乘初始向量 H k − 1 H_{k-1} Hk1(下标代表该向量代表的每一项里最大项是 h k − 1 h_{k-1} hk1)得到: H n = ∑ i = 0 k − 1 r i H i + k − 1 H_n=\sum_{i=0}^{k-1}r_iH_{i+k-1} Hn=i=0k1riHi+k1,即 h n = ∑ i = 0 k − 1 r i h i + k − 1 h_n=\sum_{i=0}^{k-1}r_ih_{i+k-1} hn=i=0k1rihi+k1

然后多项式乘法和取模都暴力搞即可。多项式取模的暴力搞就是竖式除法,由于 g g g的最高次项为1,所以这个竖式除法还是很好写的,就可以优化到 O ( k 2 log ⁡ n ) O(k^2 \log n) O(k2logn),若用点多项式技巧做除法,就有 O ( k log ⁡ k log ⁡ n ) O(k \log k \log n) O(klogklogn)

#include<bits/stdc++.h>
using namespace std;
#define RI register int
const int N=4005,mod=1000000007;
int a[N],h[N],r[N],ans[N],g[N],c[N];
int n,K,res;
int qm(int x) {return x>=mod?x-mod:x;}
void mul(int *a,int *b) {
	for(RI i=0;i<=2*K-2;++i) c[i]=0;
	for(RI i=0;i<K;++i)
		for(RI j=0;j<K;++j)
			c[i+j]=qm(c[i+j]+1LL*a[i]*b[j]%mod);
	for(RI i=2*K-2;i>=K;--i)
		for(RI j=K-1;j>=0;--j)
			c[i-K+j]=qm(c[i-K+j]-1LL*c[i]*g[j]%mod+mod);
			//直接乘以c[i]是因为g的最高次项系数为1
	for(RI i=0;i<K;++i) a[i]=c[i];
}
int main()
{
	scanf("%d%d",&n,&K);
	for(RI i=1;i<=K;++i) scanf("%d",&a[i]),a[i]=qm(a[i]+mod);
	for(RI i=0;i<K;++i) scanf("%d",&h[i]),h[i]=qm(h[i]+mod);
	g[K]=1;for(RI i=1;i<=K;++i) g[K-i]=mod-a[i];
	for(RI i=K;i<=2*K-1;++i)
		for(RI j=1;j<=K;++j) h[i]=qm(h[i]+1LL*h[i-j]*a[j]%mod);
	if(n<=2*K-1) {printf("%d\n",h[n]);return 0;}
	r[1]=ans[0]=1;
	for(RI i=n-K+1;i;i>>=1,mul(r,r)) if(i&1) mul(ans,r);
	for(RI i=0;i<K;++i) res=qm(res+1LL*ans[i]*h[K-1+i]%mod);
	printf("%d\n",res);
	return 0;
}
  • 1
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值