51nod 1355 斐波那契的最小公倍数 Max-Min容斥+莫比乌斯反演

题目分析

首先有一个结论: g c d ( f i b ( a i ) ) = f i b ( g c d ( a i ) ) gcd(fib(a_i))= fib(gcd(a_i)) gcd(fib(ai))=fib(gcd(ai)),可以尝试使用辗转相减球gcd的方法证明一下。(boshi:可以证,但没必要)

然后 l c m lcm lcm是个什么玩意呢?对于一个指定的质因数 p p p,假设 a i a_i ai的质因数 p p p的次数为 c i c_i ci,则他们的lcm的 p p p的次数为 m a x ( c i ) max(c_i) max(ci),gcd的 p p p的次数为 m i n ( c i ) min(c_i) min(ci)。看到这里,可以考虑Max-Min容斥(又称Max-Min反演),最后可以得到:

l c m ( f i b ( S ) ) = ∏ T ⊂ S , T ̸ = ∅ f i b ( g c d ( T ) ) ( − 1 ) ∣ T ∣ + 1 lcm(fib(S))=\prod_{T \subset S,T \not= \emptyset} fib(gcd(T))^{(-1)^{|T|+1}} lcm(fib(S))=TS,T̸=fib(gcd(T))(1)T+1

假设 f i b ( x ) fib(x) fib(x)的正数幂大小为 c 1 c_1 c1,负数幂绝对值大小为 c 2 c_2 c2,则我们只要把所有 f i b ( x ) c 1 − c 2 fib(x)^{c_1-c_2} fib(x)c1c2乘起来即可。

怎么求呢?以求 c 1 c_1 c1为例,只要用 O ( n ln ⁡ n ) O(n \ln n) O(nlnn)的时间求出 x x x的倍数有多少个,则知 g c d gcd gcd x x x的倍数,且集合大小为奇数的集合有多少个,设为 f ( x ) f(x) f(x)个。设 g c d gcd gcd x x x且集合大小为奇数的集合有 g ( x ) g(x) g(x)个,则有:

f ( x ) = ∑ x ∣ d g ( d ) f(x)=\sum_{x|d} g(d) f(x)=xdg(d)

莫比乌斯反演一下:

g ( x ) = ∑ x ∣ d μ ( x d ) f ( d ) g(x)=\sum_{x|d} \mu(\frac{x}{d})f(d) g(x)=xdμ(dx)f(d)

g ( x ) g(x) g(x)也是 O ( n ln ⁡ n ) O(n \ln n) O(nlnn)的,完美!

代码

#include<bits/stdc++.h>
using namespace std;
#define RI register int
int read() {
	int q=0;char ch=' ';
	while(ch<'0'||ch>'9') ch=getchar();
	while(ch>='0'&&ch<='9') q=q*10+ch-'0',ch=getchar();
	return q;
}
const int mod=1000000007,N=1000000;
int n,tot,ans=1;
int a[N+5],b[N+5],f[N+5],mu[N+5],pri[N+5],is[N+5],c[N+5];

int ksm(int x,int y,int p) {
	int re=1;
	for(;y;y>>=1,x=1LL*x*x%p) if(y&1) re=1LL*re*x%p;
	return re;
}
void prework() {
	f[1]=1;for(RI i=2;i<=N;++i) f[i]=(f[i-1]+f[i-2])%mod;
	for(RI i=1;i<=N;++i)
		for(RI j=i;j<=N;j+=i) b[i]=b[i]+a[j];
	mu[1]=1;
	for(RI i=2;i<=N;++i) {
		if(!is[i]) pri[++tot]=i,mu[i]=-1;
		for(RI j=1;j<=tot&&pri[j]*i<=N;++j) {
			is[pri[j]*i]=1;
			if(i%pri[j]==0) break;
			else mu[pri[j]*i]=-mu[i];
		}
	}
}
void getc1() {
	for(RI i=1;i<=N;++i) if(b[i]) b[i]=ksm(2,b[i]-1,mod-1);
	for(RI i=1;i<=N;++i)
		for(RI j=i;j<=N;j+=i)
			c[i]=(1LL*c[i]+1LL*mu[j/i]*b[j]+mod-1)%(mod-1);
}
void getc2() {
	for(RI i=1;i<=N;++i) if(b[i]) --b[i];
	for(RI i=1;i<=N;++i)
		for(RI j=i;j<=N;j+=i)
			c[i]=(1LL*c[i]-1LL*mu[j/i]*b[j]+mod-1)%(mod-1);
	for(RI i=1;i<=N;++i) c[i]=(c[i]+mod-1)%(mod-1);
}

int main()
{
	n=read();
	for(RI i=1;i<=n;++i) ++a[read()];
	prework();
	getc1(),getc2();
	for(RI i=1;i<=N;++i) ans=1LL*ans*ksm(f[i],c[i],mod)%mod;
	printf("%d\n",ans);
	return 0;
}
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值