题目链接: Going Home POJ - 2195
题目大意
一个n*m的地图, 有若干个人(表示为m), 若干个房子(表示为H), 一个人从一个地方到另一个地方的cost是两点之间的曼哈顿距离( |x1−x2|+|y1−y2| ), 求所有人都进入房子的cost总和是多少
思路
最小费用最大流
将人与房子一一连边, 容量为INF, cost为其曼哈顿距离
源点S与所有人连边, 容量为1, cost为0
所有房子与汇点连边, 容量为1, cost为0
求S-T的最小费用最大流
代码
#include <iostream>
#include <algorithm>
#include <cstdio>
#include <cstring>
#include <vector>
#include <queue>
#include <string>
#include <map>
using namespace std;
const int MAXV = 10000, INF = 0X3F3F3F3F;
typedef pair<int, int> P; //first最短距离, second顶点编号
struct edge
{
int to, cap, cost, rev;
edge(int To, int Cap, int Cost, int Rev) :to(To), cap(Cap), cost(Cost), rev(Rev) {}
};
int V; //顶点数
vector<edge> G[MAXV];
int h[MAXV];
int dist[MAXV];
int prevv[MAXV], preve[MAXV];
void add_edge(int from, int to, int cap, int cost)
{
G[from].push_back(edge(to, cap, cost, G[to].size()));
G[to].push_back(edge(from, 0, -cost, G[from].size()-1));
}
//s到t流量为f的最小费用流, 不存在返回-1
int min_cost_flow(int s, int t, int f)
{
int res = 0;
fill(h, h+V, 0);
while(f>0)
{
priority_queue<P, vector<P>, greater<P> > que;
fill(dist, dist+V, INF);
dist[s] = 0;
que.push(P(0, s));
while(!que.empty())
{
P p = que.top(); que.pop();
int v = p.second;
if(dist[v] < p.first) continue;
for(int i=0; i<(int)G[v].size(); ++i)
{
edge &e = G[v][i];
if(e.cap > 0 && dist[e.to] > dist[v]+e.cost+h[v]-h[e.to])
{
dist[e.to] = dist[v] + e.cost + h[v] - h[e.to];
prevv[e.to] = v;
preve[e.to] = i;
que.push(P(dist[e.to], e.to));
}
}
}
if(dist[t] == INF) return -1;
for(int v=0; v<V; v++) h[v] += dist[v];
int d = f;
for(int v=t; v != s; v=prevv[v])
{
d = min(d, G[prevv[v]][preve[v]].cap);
}
f -= d;
res += d*h[t];
for(int v=t; v!=s; v=prevv[v])
{
edge &e = G[prevv[v]][preve[v]];
e.cap -= d;
G[v][e.rev].cap += d;
}
}
return res;
}
void init(int v)
{
V = v;
for(int i=0; i<MAXV; ++i) G[i].clear();
}
const int MAXN = 220;
char s[MAXN][MAXN];
int n, m;
int cnth=0, cntm=0;
P H[MAXN*MAXN], M[MAXN*MAXN];
int cal(int i, int j)
{
return max(M[i].first, H[j].first) - min(M[i].first, H[j].first) + max(M[i].second, H[j].second) - min(M[i].second, H[j].second);
}
int main()
{
while(scanf("%d%d", &n, &m) == 2 && n && m)
{
cnth = cntm = 0;
for(int i=0; i<n; ++i) scanf("%s", s[i]);
for(int i=0; i<n; ++i)
{
for(int j=0; j<m; ++j)
{
if(s[i][j] == 'H')
{
H[cnth++] = P(i, j);
}
else if(s[i][j] == 'm')
{
M[cntm++] = P(i, j);
}
}
}
init(cnth+cntm+2);
int S = cnth + cntm;
int T = S+1;
for(int i=0; i<cntm; ++i)
{
for(int j=0; j<cnth; ++j)
{
add_edge(i, cntm+j, INF, cal(i, j));
}
}
for(int i=0; i<cntm; ++i) add_edge(S, i, 1, 0);
for(int i=0; i<cnth; ++i) add_edge(i+cntm, T, 1, 0);
cout << min_cost_flow(S, T, cntm) <<endl;
}
return 0;
}