Going Home POJ - 2195 最小费用最大流

题目链接: Going Home POJ - 2195

题目大意

一个n*m的地图, 有若干个人(表示为m), 若干个房子(表示为H), 一个人从一个地方到另一个地方的cost是两点之间的曼哈顿距离( |x1x2|+|y1y2| ), 求所有人都进入房子的cost总和是多少

思路

最小费用最大流
将人与房子一一连边, 容量为INF, cost为其曼哈顿距离
源点S与所有人连边, 容量为1, cost为0
所有房子与汇点连边, 容量为1, cost为0
求S-T的最小费用最大流

代码

#include <iostream>
#include <algorithm>
#include <cstdio>
#include <cstring>
#include <vector>
#include <queue>
#include <string>
#include <map>

using namespace std;
const int MAXV = 10000, INF = 0X3F3F3F3F;
typedef pair<int, int> P; //first最短距离, second顶点编号
struct edge
{
    int to, cap, cost, rev;
    edge(int To, int Cap, int Cost, int Rev) :to(To), cap(Cap), cost(Cost), rev(Rev) {}
};
int V; //顶点数
vector<edge> G[MAXV];
int h[MAXV];
int dist[MAXV];
int prevv[MAXV], preve[MAXV];

void add_edge(int from, int to, int cap, int cost)
{
    G[from].push_back(edge(to, cap, cost, G[to].size()));
    G[to].push_back(edge(from, 0, -cost, G[from].size()-1));
}

//s到t流量为f的最小费用流, 不存在返回-1
int min_cost_flow(int s, int t, int f)
{
    int res = 0;
    fill(h, h+V, 0);
    while(f>0)
    {
        priority_queue<P, vector<P>, greater<P> > que;
        fill(dist, dist+V, INF);
        dist[s] = 0;
        que.push(P(0, s));
        while(!que.empty())
        {
            P p = que.top(); que.pop();
            int v = p.second;
            if(dist[v] < p.first) continue;
            for(int i=0; i<(int)G[v].size(); ++i)
            {
                edge &e = G[v][i];
                if(e.cap > 0 && dist[e.to] > dist[v]+e.cost+h[v]-h[e.to])
                {
                    dist[e.to] = dist[v] + e.cost + h[v] - h[e.to];
                    prevv[e.to] = v;
                    preve[e.to] = i;
                    que.push(P(dist[e.to], e.to));
                }
            }
        }

        if(dist[t] == INF) return -1;

        for(int v=0; v<V; v++) h[v] += dist[v];

        int d = f;
        for(int v=t; v != s; v=prevv[v])
        {
            d = min(d, G[prevv[v]][preve[v]].cap);
        }

        f -= d;

        res += d*h[t];
        for(int v=t; v!=s; v=prevv[v])
        {
            edge &e = G[prevv[v]][preve[v]];
            e.cap -= d;
            G[v][e.rev].cap += d;
        }
    }
    return res;
}
void init(int v)
{
    V = v;
    for(int i=0; i<MAXV; ++i) G[i].clear();
}


const int MAXN = 220;
char s[MAXN][MAXN];
int n, m;
int cnth=0, cntm=0;
P H[MAXN*MAXN], M[MAXN*MAXN];

int cal(int i, int j)
{
    return max(M[i].first, H[j].first) - min(M[i].first, H[j].first) + max(M[i].second, H[j].second) - min(M[i].second, H[j].second);
}

int main()
{
    while(scanf("%d%d", &n, &m) == 2 && n && m)
    {
        cnth = cntm = 0;
        for(int i=0; i<n; ++i) scanf("%s", s[i]);
        for(int i=0; i<n; ++i)
        {
            for(int j=0; j<m; ++j)
            {
                if(s[i][j] == 'H')
                {
                    H[cnth++] = P(i, j);
                }
                else if(s[i][j] == 'm')
                {
                    M[cntm++] = P(i, j);
                }
            }
        }
        init(cnth+cntm+2);
        int S = cnth + cntm;
        int T = S+1;
        for(int i=0; i<cntm; ++i)
        {
            for(int j=0; j<cnth; ++j)
            {
                add_edge(i, cntm+j, INF, cal(i, j));
            }
        }
        for(int i=0; i<cntm; ++i) add_edge(S, i, 1, 0);
        for(int i=0; i<cnth; ++i) add_edge(i+cntm, T, 1, 0);
        cout << min_cost_flow(S, T, cntm) <<endl;
    }

    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值