关于分式的显示和基本求和(结合10查看)
最基本的分式
使用函数格式为 \frac{x}{y}
%分式
\[
f(x)=\frac{1}{1+x^2}
\]
输出结果
多重分式以及如何绘制好看
%多重分式
\[
f(x)=\frac{1}{\frac{1}{1+x^2}}
\]
%好看一些,有两种方式,第一种dfrac
\[
f(x)=\frac{1}{\dfrac{1}{1+2x^2}}
\]
%第二种,displaystyle ,加载需要displaystyle的地方
\[
f(x)=\frac{1}{\displaystyle\frac{1}{1+3x^2}}
\]
输出结果
此外displaystyle也有多种用法
$\sum_i^N x^i$ and $\sum_i^N x^i$
$\displaystyle\sum_i^N x^i$ and $\sum_i^N x^i$
输出结果
再添加几个比较常用的例子
\[
\frac{\displaystyle\sum_{i=0}^{i=N}x^i}{x}
\]
\[
\frac{\displaystyle\int_{-\infty}^{\infty}f(x)dx}{x^2}
\]
输出结果
最后关于如何输出根号
\[
\sqrt{x}\sqrt{y}\sqrt{z}
\]
\[
\sqrt{x}\sqrt{\smash[b]{y}}\sqrt{z}
\]
输出结果
两者之间有细微的差别,第一种三个符号直之间没有对齐。