CMP314 | 如何建立稳定扩散:训练大型人工智能模型的技巧和技巧
关键字: [Amazon Web Services re:Invent 2023, Stable Diffusion, Generative Ai Models, Large Ai Model Training, Amazon Web Services Infrastructure For Ai, Stable Diffusion Architecture, Tips For Training Large Models]
本文字数: 2800, 阅读完需: 14 分钟
视频
导读
有没有考虑过 Stable Diffusion(即深度学习,从文本到图像的模型)是如何训练的?参加本次分享,您将聆听亚马逊云科技和 Stability AI 讨论大规模训练大型人工智能模型时的最佳实践、障碍和关键考虑因素。Stability AI 与亚马逊云科技合作构建开放的人工智能工具,并运行分布式模型训练和推理。使用 Amazon EC2 P4d UltraCluster 和 PyTorch 发现可伸缩的体系结构,以有效地训练大型语言模型,并使用模型和数据并行性跨数千个 GPUs 训练模型。了解 Stability AI 如何在生产中训练和部署大型模型,并确定如何优化训练成本的指导方针。
演讲精华
以下是小编为您整理的本次演讲的精华,共2500字,阅读时间大约是12分钟。如果您想进一步了解演讲内容或者观看演讲全文,请观看演讲完整视频或者下面的演讲原文。
此次演讲由来自亚马逊云科技团队的Farshad、Pierre以及Stability AI公司的CEO Emad共同主持。在向观众了解了他们对生成性AI模型的认识程度后,Farshad简要概述了近期AI领域的进展,这些进展催生了诸如Stable Diffusion等强大的生成性模型。他指出,得益于变革性的变换器架构,如《注意力是一切所需》一文中所描述的那样,AI模型能够高效地利用并行计算,并理解数据中单词或元素之间的关系。这种架构使得GPT-3、DALL-E和Stable Diffusion等模型能够生成高质量的文本、图像和其他多媒体内容。据Farshad表示,变换器模型非常依赖于数据——它们需要大量的数据进行训练。这些模型会通过摄入训练数据来构建对世界的基本理解,就像一个人通过上学获得一般知识一样。然后,这些模型可以在特定数据集上进行微调,以专精于更狭窄的领域和任务,就像学生在工程学或医学等领域追求高等教育一样。举例说明,Farshad提到Stable Diffusion 1是通过在100,000 GB(相当于20亿张图片)的数据上训练而生成的,它是一个能