01背包问题(动态规划)python实现

这篇博客探讨了如何使用动态规划解决01背包问题。在问题中,需要比较包含和不包含某个物品的子问题解,以找到最优解。文章通过Python代码展示了自底向上的实现方式,详细解释了递归定义,并提供了n=5,c=10,物品重量w和价值v的具体例子。
摘要由CSDN通过智能技术生成

        在01背包问题中,在选择是否要把一个物品加到背包中,必须把该物品加进去的子问题的解与不取该物品的子问题的解进行比较,这种方式形成的问题导致了许多重叠子问题,使用动态规划来解决。n=5是物品的数量,c=10是书包能承受的重量,w=[2,2,6,5,4]是每个物品的重量,v=[6,3,5,4,6]是每个物品的价值,先把递归的定义写出来:


        然后自底向上实现,代码如下:

def bag(n,c,w,v):
	res=[[-1 for j in range(c+1)] for i in range(n+1)]
	for j in range(c+1):
		res[0][j]=0
	for i in range(1,n+1):
		for j in range(1,c+1):
			res[i][j]=res[i-1][j]
			if j>=w[i-1] and res[i][j]<res[i-1][j-w[i-1]]+v[i-1]:
				res[i][j]=res[i-1][j-w[i-1]]+v[i-1]
	return res

def show(n,c,w,res):
	print('最大价值为:',res[n][c])
	x=[Fal
评论 10
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值