图像篡改检测介绍

本文介绍了深度学习图像篡改检测的重要性,详细阐述了图像篡改的定义、类型,包括滤波、模糊、添加噪声等处理,以及删除、添加、复制移动和拼接等篡改操作。当前主要的检测方法侧重于图像分割。此外,文章概述了图像篡改检测的发展历程,并提及了一个学习资源。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

什么是图像篡改?

深度学习图像篡改检测算法是图像取证的被动取证方式,目前深度学习以拼接、复制移动篡改检测为主。
图像篡改鉴定有着重要的意义。
本专栏是对深度学习图像篡改检测算法的一个学习总结。

篡改在英文文献中常用manipulation、tamper、forgery这三个词表达。广义上的图像篡改指的是对原始图像做了改动的操作,这种改动操可以是:图像属性改变、图像格式转换、形态学处理、模糊处理、缩放剪裁(seam carving)等等。

图像篡改类别可以粗略划分为图像处理操作(manipulation)和图像篡改操作(tamper)两类(按英文直译,manipulation是操作的意思,此类篡改有点类似仅对图像做非内容性的处理,而tamper按直译,则是对图像做了内容性的处理):

Manipulation:滤波处理(如中值滤波 Median Filtering)、模糊处理(如高斯模糊 Gaussian Blurring)、添加噪声(如高斯白噪声 Additive White Gaussian Noise)、重采样(Resampling)、压缩处理(如JPEG压缩 JPEG Compression)等。

Tamper :删除(Removal)、添加(Adding)、复制(Copy-move)、拼接(Splicing)等。

有时候也不会分这么细,都是manipulation、tamper都指对图片的修改。

简单介绍几种篡改方式:

图像拼接(Splicing):将一张图的内容抠下来贴在另一张图上;
复制移动(Copy-move):将同一张图上的内容复制粘贴到另一个位置;
擦除填充(removal):操作将同一张图上的内容擦除掉。

当前深度学习的图像篡改区域定位方法主要有以下三种方向:

将篡改区域定位认为是像素级的二分类,采用图像分割的算法来定位篡改区域。
将篡改区域定位当作是目标检测任务,采用目标检测算法来定位篡改区域。
将篡改区域定位当作是局部异常检测,采用CNN + LSTM网络检测图像中的局部异常。

目前流行的是以图像分割为主,本专栏也是针对图像分割的算法进行汇总。

图像篡改检测发展

下面是一张汇总表,主要内容如下:
在这里插入图片描述

本专栏对图像篡改检测网络进行论文的学习以及代码的学习。

参考:
图像篡改检测技术及数据集总结https://sanshui.findn.cn/post/3f292744.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

weightOneMillion

感谢未来的亿万富翁捧个钱场~

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值