基于sklearn实现多层感知机(MLP)算法(python)

本文使用的数据类型是数值型,每一个样本6个特征表示,所用的数据如图所示:

图中A,B,C,D,E,F列表示六个特征,G表示样本标签。每一行数据即为一个样本的六个特征和标签。

实现MLP算法的代码如下(分类):

# =============神经网络用于分类=============
from sklearn.neural_network import MLPClassifier
import csv
from sklearn.preprocessing import StandardScaler
from sklearn.cross_validation import train_test_split
from sklearn.metrics import accuracy_score
from sklearn.metrics import confusion_matrix
from sklearn.metrics import classification_report
data=[]
traffic_feature=[]
traffic_target=[]
csv_file = csv.reader(open('packSize_all.csv'))
for content in csv_file:
    content=list(map(float,content))
    if len(content)!=0:
        data.append(content)
        traffic_feature.append(content[0:6])
        traffic_target.append(content[-1])
print('data=',data)
print('traffic_feature=',traffic_feature)
print('traffic_target=',traffic_target)
scaler = StandardScaler() # 标准化转换
scaler.fit(traffic_feature)  # 训练标准化对象
traffic_feature= scaler.transform(traffic_feature)   # 转换数据集
feature_train, feature_test, target_train, target_test = train_test_split(traffic_feature, traffic_target, test_size=0.3,random_state=0)
# 神经网络输入为2,第一隐藏层神经元个数为5,第二隐藏层神经元个数为2,输出结果为2分类。
# solver='lbfgs',  MLP的求解方法:L-BFGS 在小数据上表现较好,Adam 较为鲁棒,
# SGD在参数调整较优时会有最佳表现(分类效果与迭代次数),SGD标识随机梯度下降。
clf =  MLPClassifier(solver='lbfgs', alpha=1e-5,hidden_layer_sizes=(30,20), random_state=1)
clf.fit(feature_train,target_train)
predict_results=clf.predict(feature_test)
print(accuracy_score(predict_results, target_test))
conf_mat = confusion_matrix(target_test, predict_results)
print(conf_mat)
print(classification_report(target_test, predict_results))

实现MLP算法的代码如下(回归):

# =============神经网络用于回归=============
from sklearn.neural_network import MLPRegressor
import csv
from sklearn.preprocessing import StandardScaler
from sklearn.cross_validation import train_test_split
from sklearn.metrics import accuracy_score
from sklearn.metrics import confusion_matrix
from sklearn.metrics import classification_report
data=[]
traffic_feature=[]
traffic_target=[]
csv_file = csv.reader(open('packSize_all.csv'))
for content in csv_file:
    content=list(map(float,content))
    if len(content)!=0:
        data.append(content)
        traffic_feature.append(content[0:6])
        traffic_target.append(content[-1])
print('data=',data)
print('traffic_feature=',traffic_feature)
print('traffic_target=',traffic_target)
scaler = StandardScaler() # 标准化转换
scaler.fit(traffic_feature)  # 训练标准化对象
traffic_feature= scaler.transform(traffic_feature)   # 转换数据集
feature_train, feature_test, target_train, target_test = train_test_split(traffic_feature, traffic_target, test_size=0.3,random_state=0)
# 神经网络输入为2,第一隐藏层神经元个数为5,第二隐藏层神经元个数为2,输出结果为2分类。
# solver='lbfgs',  MLP的求解方法:L-BFGS 在小数据上表现较好,Adam 较为鲁棒,
# SGD在参数调整较优时会有最佳表现(分类效果与迭代次数),SGD标识随机梯度下降。
clf = MLPRegressor(solver='lbfgs', alpha=1e-5,hidden_layer_sizes=(5,2), random_state=1)
clf.fit(feature_train,target_train)
predict_results=clf.predict(feature_test)
print(accuracy_score(predict_results, target_test))
conf_mat = confusion_matrix(target_test, predict_results)
print(conf_mat)
print(classification_report(target_test, predict_results))

 

### 回答1: 多层感知机(Multilayer Perceptron,简称MLP)是一种最基本的前馈神经网络模型,在PyTorch可以很方便地实现。 首先,我们需要导入PyTorch库,并设置模型的超参数,如输入特征的维度(input_size)、隐藏层的维度(hidden_size)、输出层的维度(output_size)、学习率(learning_rate)等。 接下来,我们可以定义一个MLP类,继承自PyTorch的nn.Module父类。在MLP类的构造函数,我们定义了输入层、隐藏层和输出层的全连接层,并使用nn.ReLU作为激活函数。 然后,我们可以实现MLP类的前向传播函数forward。在forward函数,我们将输入数据通过隐藏层和激活函数进行计算,并将结果传递到输出层,得到预测值。 接下来,我们可以定义训练函数。在训练函数,我们首先将输入数据和标签转换为PyTorch的张量类型,并将其传递给MLP模型进行前向传播,得到预测值。然后,我们使用PyTorch提供的均方误差损失函数计算预测值与真实值之间的误差,并利用反向传播算法调整模型的参数。 最后,我们可以定义测试函数。在测试函数,我们首先将输入数据转换为PyTorch的张量类型,并将其传递给MLP模型进行前向传播,得到预测值。然后,我们可以打印预测值并与真实值进行比较,评估模型的性能。 在主函数,我们可以创建MLP模型实例,并调用训练函数和测试函数来训练和测试模型。 总结来说,用PyTorch实现简单的多层感知机MLP)需要定义一个MLP类,并在其定义前向传播函数和训练函数,然后在主函数创建模型实例并调用训练和测试函数。通过不断优化模型参数,我们可以提高模型的性能和准确率。 ### 回答2: 多层感知机(Multi-Layer Perceptron,简称MLP)是一种基本的人工神经网络模型,在PyTorch可以很方便地实现。 首先,我们需要导入PyTorch库: ```python import torch import torch.nn as nn ``` 接下来,我们定义一个MLP类,并继承自nn.Module: ```python class MLP(nn.Module): def __init__(self, input_dim, hidden_dim, output_dim): super(MLP, self).__init__() self.hidden_layer = nn.Linear(input_dim, hidden_dim) self.output_layer = nn.Linear(hidden_dim, output_dim) def forward(self, x): x = torch.relu(self.hidden_layer(x)) x = self.output_layer(x) return x ``` MLP类初始化方法,我们传入了输入维度、隐藏层维度和输出维度作为参数。然后,我们在初始化方法定义了一个隐藏层和一个输出层,它们都是线性变换层(Linear)。 在forward方法,我们使用ReLU作为激活函数对隐藏层进行非线性变换,并将隐藏层的输出作为输入传给输出层。 接下来,我们可以实例化一个MLP模型并定义输入和输出的维度: ```python input_dim = 784 # 输入维度为28x28 hidden_dim = 256 # 隐藏层维度为256 output_dim = 10 # 输出维度为10,对应10个类别 model = MLP(input_dim, hidden_dim, output_dim) ``` 然后,我们可以使用该模型进行前向传播计算,并得到输出: ```python input = torch.randn(64, input_dim) # 随机生成输入数据,batch_size为64 output = model(input) ``` 最后,我们可以通过定义损失函数和优化器来训练MLP模型: ```python criterion = nn.CrossEntropyLoss() # 定义交叉熵损失函数 optimizer = torch.optim.SGD(model.parameters(), lr=0.01) # 定义随机梯度下降优化器 # 训练循环 for epoch in range(num_epochs): optimizer.zero_grad() # 梯度清零 output = model(input) # 前向传播 loss = criterion(output, target) # 计算损失 loss.backward() # 反向传播 optimizer.step() # 更新参数 ``` 通过以上步骤,我们就可以使用PyTorch实现一个简单的多层感知机MLP)模型。 ### 回答3: 多层感知机(Multilayer Perceptron,MLP)是一种经典的神经网络模型,其在PyTorch实现相对简单。 首先,在PyTorch,我们可以使用`torch.nn`工具包来构建多层感知机。这个工具包提供了各种用于构建神经网络层的函数和类。 要实现一个简单的多层感知机模型,我们首先需要定义一个继承自`torch.nn.Module`的类。在这个类,我们通过定义不同的层来构建我们的神经网络结构。 接下来,我们需要在类的构造函数定义我们的网络结构。我们可以使用`torch.nn.Linear`类来创建全连接层,它的输入参数是输入特征的维度和输出特征的维度。 然后,在类的前向传播函数`forward`,我们需要定义数据在网络的前向流动过程。我们可以使用不同的激活函数(例如`torch.nn.ReLU`)和池化函数(如`torch.nn.MaxPool2d`)来增加网络的非线性能力。 接下来,我们需要定义模型的损失函数和优化器。PyTorch提供了各种损失函数(如均方误差损失函数`torch.nn.MSELoss`)和各种优化器(如随机梯度下降`torch.optim.SGD`)。 在训练过程,我们需要遍历数据集,并将数据输入到模型进行前向传播和反向传播。在每个批次的训练,我们需要计算损失函数,并使用优化器来更新模型的参数。 最后,我们可以通过将输入数据传递给训练好的模型,利用模型的`forward`函数来进行预测。 总结来说,通过PyTorch实现简单的多层感知机,我们需要定义网络结构,选择合适的损失函数和优化器,并使用训练数据来更新模型的参数,从而实现对输入数据的预测。多层感知机在PyTorch实现相对简单,同时PyTorch也提供了丰富的工具和函数来支持神经网络构建和训练。
评论 12
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值