Sklearn中的深度学习基础算法-神经网络MLP

本文介绍了Sklearn库中的MLPClassifier类,虽然Sklearn不专门用于深度学习,但该类提供了构建神经网络的基础。重点讨论了隐藏层和神经元的重要参数hidden_layer_sizes,它决定了神经网络的结构。文章还提到了模型建立、数据导入、交叉验证得分以及hidden_layer_sizes参数的使用方法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

sklearn是专注于机器学习的库,它在神经网络的模块中特地标注:sklearn不是用于深度学习的平台,因此这个神经网络不具备做深度学习的功能,也不具备处理大型数据的能力,所以神经网络在sklearn中颇有被冷落的意思。原理讲解也非常简单,并没有详细的描述。但是使用神经网络的类还是有很多参数,写法详细。
在这里插入图片描述

以多层感知机为基础的类:MLPClassifier-神经网络分类器

class sklearn.neural_network.MLPClassifier (hidden_layer_sizes=(100, ), activation=’relu’,
solver=’adam’, alpha=0.0001, batch_size=’auto’, learning_rate=’constant’, learning_rate_init=0.001,
power_t=0.5, max_iter=200, shuffle=True, random_state=None, tol=0.0001, verbose=False,
warm_start=False, momentum=0.9, nesterovs_momentum=True, early_stopping=False,
validation_fraction=0.1, beta_1=0.9, beta_2=0.999, epsilon=1e-08, n_iter_no_change=10)

隐藏层与神经元:重要参数hidden_layer_sizes

神经网络算法中要考虑的第一件事情就是我们的隐藏层的结构,如果不设定结构,神经网络本身甚至无法构建,因此这是一个超参数。
参数含义
hidden_layer_sizes
元组,长度= n_layers - 2,默认值(100, )
元祖中包含多少个元素,就表示设定多少隐藏层
元祖中的第i个元素表示第i个隐藏层中的神经元数量
先来建立一个神经网络吧。

  1. 导入需要的数据和库,导入数据集
import numpy as np
from sklearn.neural_network import MLPClassifier as DNN
from sklearn.metrics import accuracy_score
from sklearn.model_selection import cross_val_score as cv
import matplotlib.pyplot as plt
from sklearn.datasets import load_breast_cancer
from sklearn.tree import DecisionTreeClassifier as DTC
from sklearn.model_selection import train_test_split as TTS
from time import time
import datetime
data = load_breast_cancer()
X = data.data
y = data.target
Xtrain, Xtest, Ytrain, Ytest = TTS(X,y,test_size=0.3,random_state=420)
  1. 建模,使用交叉验证导出分数
times = time()
dnn = DNN(hidden_layer_sizes=(100,),max_iter=500,random_state=420)
print(cv(dnn,X,y,cv=
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值