机器学习基础算法 (六)-k 最近邻算法(k-Nearest Neighbors, k-NN)

目录

  1. k 最近邻算法原理
  2. Python 实现 k 最近邻算法
  3. 模型评估与调优
  4. 总结

在机器学习领域中,k 最近邻(k-Nearest Neighbors, k-NN)算法以其简单、直观且易于理解的特点,广泛应用于分类和回归任务。尽管它在处理大规模数据时可能遇到效率瓶颈,但凭借其无参数、懒惰学习(Lazy Learning)等特性,仍然是许多实际应用中不可或缺的工具。

本文将深入探讨 k-NN 的原理、Python 实现、模型评估以及调优,最终通过具体的案例展示如何在实际项目中应用该算法。

一、k 最近邻算法原理

k-NN 是一种基于实例的学习算法,这意味着模型在训练过程中并不进行显式的学习,而是直接记住训练数据中的所有实例,并在预测时通过计算新样本与训练样本之间的距离来做出判断。

1.1 算法步骤

k-NN 的工作原理可以总结为以下几个步骤:

  1. 选择距离度量:常见的距离度量方法有欧几里得距离、曼哈顿距离、余弦相似度等。最常用的是欧几里得距离。
  2. 选择 k 值:选择一个正整数 k,表示从训练数据集中选取 k 个与测试点距离最小的样本。
  3. 投票/加权投票:对于分类任务,k 个邻居会投票选出最多的类别;对于回归任务,则取 k 个邻居的均值或加权均值作为预测值。

1.2 距离度量公式

在这里插入图片描述

此外,还可以使用其他类型的距离度量方法,如曼哈顿距离、切比雪夫距离等。

1.3 优缺点分析

优点

  • 简单直观:k-NN 算法没有训练过程,非常直观,易于理解。
  • 无需假设数据分布:与线性回归或逻辑回归等方法不同,k-NN 不需要对数据分布作任何假设,适用于多种数据类型。
  • 适应性强:在高维空间中,k-NN 仍能较好地处理复杂的分类问题。

缺点

  • 计算复杂度高:由于在预测时需要计算与所有训练样本的距离,因此在处理大数据集时效率较低。
  • 维度灾难:在高维数据中,欧几里得距离的效果可能会退化,导致 k-NN 的性能下降。
  • 需要选择合适的 k 值:k 值的选择对模型的效果有很大影响。如果 k 值过小,模型可能对噪声过于敏感;如果 k 值过大,模型可能会变得过于简单。

二、Python 实现 k 最近邻算法

在 Python 中,常用的机器学习库 scikit-learn 提供了非常方便的 k-NN 实现,下面我们将通过一个简单的示例展示如何使用 k-NN 进行分类任务。

2.1 安装必要的库

在开始实现之前,确保安装了 scikit-learnmatplotlib 等必要的库:

pip install scikit-learn matplotlib

2.2 导入数据与库

我们使用 scikit-learn 提供的鸢尾花数据集(Iris Dataset)进行分类任务,该数据集包含了 150 条样本,每个样本有 4 个特征(如花瓣长度、花萼宽度等),目标是根据这些特征预测鸢尾花的种类。

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from sklearn.model_selection import train_test_split
from sklearn.neighbors import KNeighborsClassifier
from sklearn.datasets import load_iris
from sklearn.metrics import accuracy_score

2.3 加载并探索数据

我们使用 load_iris() 加载数据集,查看其基本信息。

# 加载数据
iris = load_iris()
X = iris.data
y = iris.target

# 查看数据集的基本信息
print("数据特征名称:", iris.feature_names)
print("数据集大小:", X.shape
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

海棠AI实验室

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值