机器学习基础算法 (十四) - 独立成分分析(ICA, Independent Component Analysis)

在这里插入图片描述

点击进入:机器学习基础算法 (一)-线性回归
点击进入:机器学习基础算法 (二)-逻辑回归
点击进入:机器学习基础算法 (三)-支持向量机(SVM)
点击进入:机器学习基础算法 (四)-决策树(Decision Tree)
点击进入:机器学习基础算法 (五)-随机森林:集成学习的强大力量
点击进入:机器学习基础算法 (六)-k 最近邻算法(k-Nearest Neighbors, k-NN)
点击进入:机器学习基础算法 (七)-朴素贝叶斯(Naive Bayes)
点击进入:机器学习基础算法 (八)-K均值聚类(K-Means Clustering)
点击进入:机器学习基础算法 (九) - AdaBoost
点击进入:机器学习基础算法 (九-二) - 梯度提升机(Gradient Boosting Machines, GBM)
点击进入:机器学习基础算法 (十) - XGBoost
点击进入:机器学习基础算法 (十一) - LightGBM-微软
点击进入:机器学习基础算法 (十二) - 层次聚类(Hierarchical Clustering)
点击进入:机器学习基础算法 (十三) - 主成分分析(PCA, Principal Component Analysis)
点击进入:机器学习基础算法 (十四) - 独立成分分析(ICA, Independent Component Analysis)
点击进入:机器学习基础算法 (十五) - t-SNE(t-Distributed Stochastic Neighbor Embedding)

介绍

在处理信号和数据分析的过程中,我们经常会遇到这样的问题:如何从多个信号中分离出独立的源信号。这种问题通常出现在音频信号处理、图像分解以及脑电图(EEG)信号分析等领域。独立成分分析(ICA, Independent Component Analysis)就是为了解决这一类问题而提出的。

ICA是一种无监督学习算法,它的主要目标是从观测到的多变量信号中提取出独立的成分。在信号分离、盲源分离等任务中,ICA表现出色。与主成分分析(PCA)不同,PCA强调数据中方差的最大化,而ICA则侧重于数据的独立性。

本文将深入探讨ICA的基本原理、应用场景、与PCA的区别以及Python实现,最后通过一个实例演示其在盲源分离中的应用。

一、独立成分分析(ICA)的原理

1.1 ICA的基

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

海棠AI实验室

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值