目录
- 引言
- GAN的基本架构
- GAN的主要变种
- 训练细节与关键超参数设置
- GAN评估指标
- GAN的应用领域
- 工业应用挑战与实践要点
- 与其他生成模型的对比
- 未来展望与前沿研究
- 结论
1. 引言
自2014年Ian Goodfellow等人在论文“Generative Adversarial Nets”[1]中提出生成对抗网络(Generative Adversarial Networks,GAN)以来,GAN迅速成为深度学习领域最引人注目的研究方向之一。它通过两个网络之间的对抗训练(生成器与判别器),在图像生成、图像修复、风格迁移、文本生成、医学影像增强、视频生成和游戏开发等领域都取得了显著成果。随着研究的不断深化,GAN衍生出多种变体,如DCGAN、WGAN、CycleGAN、Pix2Pix、StyleGAN、BigGAN等,在各自领域都有突出的表现。
本文将从GAN的基本架构与训练原理入手,引入多个代表性GAN变体,并通过示例代码和评估指标来探讨如何训练和评价GAN。同时,我们还将阐述GAN在工业界广泛应用时可能面临的挑战,并展望GAN与其他生成模型(如扩散模型、流模型)共同塑造生成式AI未来的潜力与方向。