朴素贝叶斯:后验概率最大化的推导

本文是记录在学习朴素贝叶斯的后验概率最大化的推导遇到的一些疑问, 以供参考.

首先, 我们可以知道朴素贝叶斯分类器可以表示为:
y = f ( x ) = arg ⁡ max ⁡ c k P ( Y = c k ) ∏ j P ( X ( j ) = x ( j ) ∣ Y = c k ) y=f(x)=\arg\max_{c_k}P(Y=c_k)\prod_jP(X^{(j)}=x^{(j)}|Y=c_k) y=f(x)=argckmaxP(Y=ck)jP(X(j)=x(j)Y=ck)
假设损失函数为: L ( Y , f ( X ) ) L(Y, f(X)) L(Y,f(X)), 所以期望损失函数为:
R e x p f ( x ) = E ( L ( Y , f ( X ) ) = ∑ x ∈ X ∑ c k ∈ Y L ( y = c k , f ( x ) ) P ( X = x , Y = c k ) = ∑ x ∈ X ∑ c k ∈ Y L ( y = c k , f ( x ) ) P ( Y = c k ∣ X = x ) P ( X = x ) = ∑ x ∈ X [ ∑ c k ∈ Y L ( y = c k , f ( X ) ) P ( Y = c k ∣ X = x ) ] P ( X = x ) = E X [ ∑ c k ∈ Y L ( y = c k , f ( X ) ) P ( Y = c k ∣ X = x ) ] \begin{aligned} R_{exp}f(x)&= E(L(Y, f(X)) \\ &= \sum_{x\in X}\sum_{c_k \in Y} L(y=c_k, f(x)) P(X=x, Y=c_k) \\ &= \sum_{x\in X}\sum_{c_k \in Y} L(y=c_k, f(x)) P(Y=c_k|X=x) P(X=x) \\ &= \sum_{x\in X}\bigg[\sum_{c_k \in Y} L(y=c_k, f(X)) P(Y=c_k|X=x)\bigg] P(X=x) \\ &= E_X\bigg[\sum_{c_k \in Y} L(y=c_k, f(X)) P(Y=c_k|X=x)\bigg] \end{aligned} Rexpf(x)=E(L(Y,f(X))=xXckYL(y=ck,f(x))P(X=x,Y=ck)=xXckYL(y=ck,f(x))P(Y=ckX=x)P(X=x)=xX[ckYL(y=ck,f(X))P(Y=ckX=x)]P(X=x)=EX[ckYL(y=ck,f(X))P(Y=ckX=x)]
当损失函数是 0-1 损失函数
0 − 1 损失函数 : L ( Y , f ( X ) ) = { 1 , Y ≠ f ( X ) 0 , Y = f ( X ) 0-1 损失函数: L(Y, f(X)) = \left\{ \begin{array}{cc} 1, & Y \neq f(X) \\ 0, & Y = f(X) \end{array} \right. 01损失函数:L(Y,f(X))={1,0,Y=f(X)Y=f(X)

若预测值 f ( x ) = y f(x) = y f(x)=y, 期望损失函数为 E ( 0 ) = 0 E(0)=0 E(0)=0;

若预测值 f ( x ) ≠ y f(x )\neq y f(x)=y, 期望损失函数为 E X [ ∑ c k ∈ Y P ( y ≠ c k ∣ X = x ) ] E_X\bigg[\sum_{c_k \in Y} P(y \neq c_k|X=x)\bigg] EX[ckYP(y=ckX=x)]

所以最小化期望损失函数就是:
f ( x ) = arg ⁡ min ⁡ c k E X [ ∑ c k ∈ Y P ( y ≠ c k ∣ X = x ) ] f(x) =\arg\min_{c_k}E_X\bigg[\sum_{c_k \in Y} P(y \neq c_k|X=x)\bigg] f(x)=argckminEX[ckYP(y=ckX=x)]
因为 P ( x ) P(x) P(x)是概率密度函数, 相当于 ∑ c k ∈ Y P ( y ≠ c k ∣ X = x ) \sum_{c_k \in Y} P(y \neq c_k|X=x) ckYP(y=ckX=x)这一部分的权重,
所以最小化 E X [ ∑ c k ∈ Y P ( y ≠ c k ∣ X = x ) ] ) E_X\bigg[\sum_{c_k \in Y} P(y \neq c_k|X=x)\bigg]) EX[ckYP(y=ckX=x)])就相当于对每个 x x x求最小化
所以有:

f ( x ) = arg ⁡ min ⁡ c k ∑ c k ∈ Y P ( y ≠ c k ∣ X = x ) f(x) =\arg\min_{c_k}\sum_{c_k \in Y} P(y \neq c_k|X=x) f(x)=argckminckYP(y=ckX=x)

这里的预测值 x x x只会属于某一个类别,因此,1减去属于某个类别的概率等价于预测值不属于其他所有类别的概率, 就可以去掉求和符 ∑ c k ∈ Y \sum_{c_k \in Y} ckY, 得到:
f ( x ) = arg ⁡ min ⁡ c k ( 1 − P ( y ≠ c k ∣ X = x ) ) = arg ⁡ max ⁡ c k P ( y = c k ∣ X = x ) \begin{aligned} f(x)&=\arg\min_{c_k}(1- P(y \neq c_k|X=x)) \\ &=\arg \max_{c_k}P(y = c_k|X=x) \end{aligned} f(x)=argckmin(1P(y=ckX=x))=argckmaxP(y=ckX=x)

最终, 我们就得到了后验概率最大化准则:
f ( X ) = arg ⁡ max ⁡ c k P ( y = c k ∣ X = x ) f(X)=\arg \max_{c_k}P(y = c_k|X=x) f(X)=argckmaxP(y=ckX=x)
即选取使后验概率最大的值作为预测值

参考:
第四章朴素贝叶斯法.4.3 期望风险最小化
朴素贝叶斯 期望风险最小化与最大后验概率

  • 9
    点赞
  • 17
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值