看李航的《统计学习方法》朴素贝叶斯章节中4.1.2后验概率对大化的含义时,对这里的理解有些困扰,参考另一篇博客在这里写下自己对这一个问题的个人见解,烦请指正。
如上图所示,书中从期望风险函数直接跳到条件取值期望,这里的推导过程如下:
在这里,设:
那么上式可以改为:
对于上式的期望风险求最小化,可以发现这是一个积分,积分中的中的各项以及都大于0,所以积分过程中不存在积分域内的两块积分相减的情况,因此求最小值就是求的最小值。对于任意的一个,为常数,那么最小值一定是在取最小值的时候取到。因此对期望风险函数的求解可以转为所谓的求条件期望的最小值:
对于离散型随机变量,可以变换为:
(这是我对这里的理解,书写方式和书中不一致,不知是否有错误,烦请指正)
在书中还有一句就是对逐个极小化,还是由于和都是大于0的,那么要求的最小化就要使其中的每一项取最小值。
随后的化简过程就比较简单了,这里不再赘述。
参考博客: