【OpenCV】55 二值图像分析—凸包检测

55 二值图像分析—凸包检测

代码

import cv2 as cv
import numpy as np

src = cv.imread("../images/hand.jpg")
cv.namedWindow("input", cv.WINDOW_AUTOSIZE)
cv.imshow("input", src)
gray = cv.cvtColor(src, cv.COLOR_BGR2GRAY)
ret, binary = cv.threshold(gray, 0, 255, cv.THRESH_BINARY | cv.THRESH_OTSU)
k = cv.getStructuringElement(cv.MORPH_RECT, (3, 3))
binary = cv.morphologyEx(binary, cv.MORPH_OPEN, k)
cv.imshow("binary", binary)

# 轮廓发现
contours, hierarchy = cv.findContours(binary, cv.RETR_EXTERNAL, cv.CHAIN_APPROX_SIMPLE)
for c in range(len(contours)):
    ret = cv.isContourConvex(contours[c])
    points = cv.convexHull(contours[c])
    total = len(points)
    for i in range(len(points)):
        x1, y1 = points[i%total][0]
        x2, y2 = points[(i+1)%total][0]
        cv.circle(src, (x1, y1), 4, (255, 0, 0), 2, 8, 0)
        cv.line(src, (x1, y1), (x2, y2), (0, 0, 255), 2, 8, 0)
    print(points)
    print("convex : ", ret)

# 显示
cv.imshow("contours_analysis", src)
cv.waitKey(0)
cv.destroyAllWindows()

实验结果

在这里插入图片描述

解释

对二值图像进行轮廓分析之后,对获取到的每个轮廓数据,可以构建每个轮廓的凸包,构建完成之后会返回该凸包包含的点集。根据返回的凸包点集可以绘制该轮廓对应的凸包。OpenCV对轮廓提取凸包的API函数如下:

hull	=	cv.convexHull(points[, hull[, clockwise[, returnPoints]]])
  • points是输入的轮廓点集
  • hull是凸包检测的输出结果,当参数returnPoints为ture的时候返回凸包的顶点坐标是个点集、returnPoints为false的是返回的是一个integer的vector里面是凸包各个顶点在轮廓点集对应的index
  • clockwise 表示顺时针方向或者逆时针方向
  • returnPoints表示是否返回点集

OpenCV中的凸包寻找算法是基于Graham’s扫描法。
OpenCV中还提供了另外一个API函数用来判断一个轮廓是否为凸包,该方法如下:

retval = cv.isContourConvex(contour)

该方法只有一个输入参数就是轮廓点集。


所有内容均来源于贾志刚老师的知识星球——OpenCV研习社,本文为个人整理学习,已获得贾老师授权,有兴趣、有能力的可以加入贾老师的知识星球进行深入学习。
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值