55 二值图像分析—凸包检测
代码
import cv2 as cv
import numpy as np
src = cv.imread("../images/hand.jpg")
cv.namedWindow("input", cv.WINDOW_AUTOSIZE)
cv.imshow("input", src)
gray = cv.cvtColor(src, cv.COLOR_BGR2GRAY)
ret, binary = cv.threshold(gray, 0, 255, cv.THRESH_BINARY | cv.THRESH_OTSU)
k = cv.getStructuringElement(cv.MORPH_RECT, (3, 3))
binary = cv.morphologyEx(binary, cv.MORPH_OPEN, k)
cv.imshow("binary", binary)
# 轮廓发现
contours, hierarchy = cv.findContours(binary, cv.RETR_EXTERNAL, cv.CHAIN_APPROX_SIMPLE)
for c in range(len(contours)):
ret = cv.isContourConvex(contours[c])
points = cv.convexHull(contours[c])
total = len(points)
for i in range(len(points)):
x1, y1 = points[i%total][0]
x2, y2 = points[(i+1)%total][0]
cv.circle(src, (x1, y1), 4, (255, 0, 0), 2, 8, 0)
cv.line(src, (x1, y1), (x2, y2), (0, 0, 255), 2, 8, 0)
print(points)
print("convex : ", ret)
# 显示
cv.imshow("contours_analysis", src)
cv.waitKey(0)
cv.destroyAllWindows()
实验结果
解释
对二值图像进行轮廓分析之后,对获取到的每个轮廓数据,可以构建每个轮廓的凸包,构建完成之后会返回该凸包包含的点集。根据返回的凸包点集可以绘制该轮廓对应的凸包。OpenCV对轮廓提取凸包的API函数如下:
hull = cv.convexHull(points[, hull[, clockwise[, returnPoints]]])
points
是输入的轮廓点集hull
是凸包检测的输出结果,当参数returnPoints为ture的时候返回凸包的顶点坐标是个点集、returnPoints为false的是返回的是一个integer的vector里面是凸包各个顶点在轮廓点集对应的indexclockwise
表示顺时针方向或者逆时针方向returnPoints
表示是否返回点集
OpenCV中的凸包寻找算法是基于Graham’s扫描法。
OpenCV中还提供了另外一个API函数用来判断一个轮廓是否为凸包,该方法如下:
retval = cv.isContourConvex(contour)
该方法只有一个输入参数就是轮廓点集。
所有内容均来源于贾志刚老师的知识星球——OpenCV研习社,本文为个人整理学习,已获得贾老师授权,有兴趣、有能力的可以加入贾老师的知识星球进行深入学习。