Python: 从PYTORCH导出模型到ONNX,并使用ONNX运行时运行它

27 篇文章 38 订阅
3 篇文章 1 订阅

Python: 从PYTORCH导出模型到ONNX,并使用ONNX运行时运行它

本教程我们将描述如何将PyTorch中定义的模型转换为ONNX格式,然后使用ONNX运行时运行它。

ONNX运行时是一个针对ONNX模型的性能关注引擎,它可以高效地跨多个平台和硬件(Windows、Linux和Mac以及cpu和gpu)进行推理。ONNX运行时已被证明在多个模型上显著提高了性能。

对于本教程,您将需要安装ONNX和ONNX运行时。您可以使用pip install ONNX onnxruntime获得ONNX和ONNX运行时的二进制构建。请注意,ONNX运行时兼容Python 3.6到3.9版本。

注意: 本教程需要PyTorch主分支,它可以按照“https://github.com/pytorch/pytorch#from-source”说明安装。

# Some standard imports
import io
import numpy as np

from torch import nn
import torch.utils.model_zoo as model_zoo
import torch.onnx

超分辨率是提高图像、视频分辨率的一种方法,广泛应用于图像处理或视频编辑。本教程我们将使用一个小的超分辨率模型。

首先,让我们在PyTorch中创建一个超分辨率模型。该模型使用Shi等人在“使用有效的亚像素卷积神经网络实现实时单图像和视频超分辨率”中描述的有效的亚像素卷积层,以提高图像的分辨率。

该模型将图像YCbCr的Y分量作为输入,并以超分辨率输出放大后的Y分量。

这个模型直接来自PyTorch的例子,没有修改:

# Super Resolution model definition in PyTorch
import torch.nn as nn
import torch.nn.init as init


class SuperResolutionNet(nn.Module):
    def __init__(self, upscale_factor, inplace=False):
        super(SuperResolutionNet, self).__init__()

        self.relu = nn.ReLU(inplace=inplace)
        self.conv1 = nn.Conv2d(1, 64, (5, 5), (1, 1), (2, 2))
        self.conv2 = nn.Conv2d(64, 64, (3, 3), (1, 1), (1, 1))
        self.conv3 = nn.Conv2d(64, 32, (3, 3), (1, 1), (1, 1))
        self.conv4 = nn.Conv2d(32, upscale_factor ** 2, (3, 3), (1, 1), (1, 1))
        self.pixel_shuffle = nn.PixelShuffle(upscale_factor)

        self._initialize_weights()

    def forward(self, x):
        x = self.relu(self.conv1(x))
        x = self.relu(self.conv2(x))
        x = self.relu(self.conv3(x))
        x = self.pixel_shuffle(self.conv4(x))
        return x

    def _initialize_weights(self):
        init.orthogonal_(self.conv1.weight, init.calculate_gain('relu'))
        init.orthogonal_(self.conv2.weight, init.calculate_gain('relu'))
        init.orthogonal_(self.conv3.weight, init.calculate_gain('relu'))
        init.orthogonal_(self.conv4.weight)

# Create the super-resolution model by using the above model definition.
torch_model = SuperResolutionNet(upscale_factor=3)

通常,你会训练这个模型;然而,本教程我们将下载一些预先训练过的力量。请注意,这个模型并不是为了获得良好的准确性而完全训练的,这里仅用于演示目的。

在导出模型之前调用torch_model.eval()或torch_model.train(False)是很重要的,以便将模型转换为推理模式。这是必需的,因为像dropout或batchnorm这样的操作符在推理和训练模式中的行为不同。

# Load pretrained model weights
model_url = 'https://s3.amazonaws.com/pytorch/test_data/export/superres_epoch100-44c6958e.pth'
batch_size = 1    # just a random number

# Initialize model with the pretrained weights
map_location = lambda storage, loc: storage
if torch.cuda.is_available():
    map_location = None
torch_model.load_state_dict(model_zoo.load_url(model_url, map_location=map_location))

# set the model to inference mode
torch_model.eval()

在PyTorch中导出模型可以通过跟踪或脚本实现。

本教程将使用一个通过跟踪导出的模型作为示例。

要导出模型,我们调用torch.onnx.export()函数。

这将执行模型,记录用于计算输出的操作符的跟踪。

因为export运行这个模型,所以我们需要提供一个输入张量x。只要它的类型和大小正确,其中的值就可以是随机的。

注意,除非指定为动态轴,否则输出的ONNX图中的所有输入尺寸都是固定的。

在本例中,我们使用batch_size 1的输入导出模型,然后在torch.onnx.export()中的dynamic_axes参数中将第一个维度指定为动态的。

因此,导出的模型将接受size [batch_size, 1, 224, 224]的输入,其中batch_size可以是可变的。

要了解关于PyTorch的导出接口的更多细节,请查看torch.onnx文档。

# Input to the model
x = torch.randn(batch_size, 1, 224, 224, requires_grad=True)
torch_out = torch_model(x)

# Export the model
torch.onnx.export(torch_model,               # model being run
                  x,                         # model input (or a tuple for multiple inputs)
                  "super_resolution.onnx",   # where to save the model (can be a file or file-like object)
                  export_params=True,        # store the trained parameter weights inside the model file
                  opset_version=10,          # the ONNX version to export the model to
                  do_constant_folding=True,  # whether to execute constant folding for optimization
                  input_names = ['input'],   # the model's input names
                  output_names = ['output'], # the model's output names
                  dynamic_axes={'input' : {0 : 'batch_size'},    # variable lenght axes
                                'output' : {0 : 'batch_size'}})

我们还计算了模型之后的输出torch_out,我们将使用它来验证我们导出的模型在ONNX运行时计算出的值相同。

但是在用ONNX运行时验证模型的输出之前,我们将用ONNX的API检查ONNX模型。

首先,onnx.load("super_resolution.onnx")将加载保存的模型并输出一个onnx.ModelProto结构(用于绑定ML模型的顶层文件/容器格式,更多信息参考onnx.proto documentation文档)。

然后,onnx_checker .check_model(onnx_model)将验证模型的结构,并确认模型有一个有效的模式。

通过检查模型的版本、图的结构、节点及其输入和输出来验证ONNX图的有效性。

import onnx

onnx_model = onnx.load("super_resolution.onnx")
onnx.checker.check_model(onnx_model)

现在让我们使用ONNX运行时的Python api来计算输出。

这部分通常可以在单独的进程或另一台机器上完成,但我们将继续在同一进程中进行,以便验证ONNX运行时和PyTorch为网络计算的值是否相同。

为了使用ONNX运行时运行模型,我们需要使用所选的配置参数(这里我们使用默认配置)为模型创建一个推断会话。

创建会话之后,我们使用run() api对模型进行评估。这个调用的输出是一个列表,其中包含由ONNX运行时计算的模型的输出。

import onnxruntime

ort_session = onnxruntime.InferenceSession("super_resolution.onnx")

def to_numpy(tensor):
    return tensor.detach().cpu().numpy() if tensor.requires_grad else tensor.cpu().numpy()

# compute ONNX Runtime output prediction
ort_inputs = {ort_session.get_inputs()[0].name: to_numpy(x)}
ort_outs = ort_session.run(None, ort_inputs)

# compare ONNX Runtime and PyTorch results
np.testing.assert_allclose(to_numpy(torch_out), ort_outs[0], rtol=1e-03, atol=1e-05)

print("Exported model has been tested with ONNXRuntime, and the result looks good!")

我们应该看到PyTorch和ONNX运行时的输出在数字上与给定的精度匹配(rtol=1e-03和atol=1e-05)。

作为附注,如果他们不匹配,那么ONNX导出有问题,所以请联系我们。

Running the model on an image using ONNX Runtime

到目前为止,我们已经从PyTorch导出了一个模型,并展示了如何加载它并在ONNX运行时使用一个虚拟张量作为输入来运行它。

在本教程中,我们将使用一张著名的猫的图片,如下图所示:

首先,让我们加载图像,预处理它使用标准的PIL python库。注意,这种预处理是为训练/测试神经网络而处理数据的标准实践。

我们首先调整图像的大小以适应模型输入的大小(224x224)。然后我们将图像分割成Y、Cb和Cr三个分量。

这些分量代表灰度图像(Y),以及色度分量蓝差(Cb)和红差(Cr)。对于人眼来说,Y分量更敏感,我们感兴趣的是我们要转换的这个分量。

在提取Y分量后,我们将它转换成一个张量,这将是我们模型的输入。

from PIL import Image
import torchvision.transforms as transforms

img = Image.open("./_static/img/cat.jpg")

resize = transforms.Resize([224, 224])
img = resize(img)

img_ycbcr = img.convert('YCbCr')
img_y, img_cb, img_cr = img_ycbcr.split()

to_tensor = transforms.ToTensor()
img_y = to_tensor(img_y)
img_y.unsqueeze_(0)

现在,作为下一步,让我们使用表示灰度调整后的猫图像的张量,并在ONNX运行时中运行超分辨率模型,如前所述。

ort_inputs = {ort_session.get_inputs()[0].name: to_numpy(img_y)}
ort_outs = ort_session.run(None, ort_inputs)
img_out_y = ort_outs[0]

此时,模型的输出是一个张量。现在,我们将处理模型的输出,从输出张量中构造出最终的输出图像,并保存图像。后处理步骤在这里采用了超分辨率模型的PyTorch实现(https://github.com/pytorch/examples/blob/master/super_resolution/super_resolve.py)。

img_out_y = Image.fromarray(np.uint8((img_out_y[0] * 255.0).clip(0, 255)[0]), mode='L')

# get the output image follow post-processing step from PyTorch implementation
final_img = Image.merge(
    "YCbCr", [
        img_out_y,
        img_cb.resize(img_out_y.size, Image.BICUBIC),
        img_cr.resize(img_out_y.size, Image.BICUBIC),
    ]).convert("RGB")

# Save the image, we will compare this with the output image from mobile device
final_img.save("./_static/img/cat_superres_with_ort.jpg")

ONNX运行时是一个跨平台引擎,你可以在多个平台上运行它,包括cpu和gpu。

ONNX运行时也可以部署到云上,使用Azure机器学习服务进行模型推理。更多的信息在这里。

这里有更多关于ONNX运行时性能的信息。

关于ONNX运行时的更多信息,请点击这里。

脚本的总运行时间:(0分钟0.000秒)

Pytorch 模型导出ONNX 或 TensorRT 格式的具体步骤如下: ### 导出ONNX 格式 1. 安装 onnx 包:`pip install onnx` 2. 加载 Pytorch 模型并将其转换ONNX 模型: ```python import torch import torchvision import onnx # 加载 Pytorch 模型 model = torchvision.models.resnet18(pretrained=True) # 转换ONNX 模型 dummy_input = torch.randn(1, 3, 224, 224) input_names = ["input"] output_names = ["output"] onnx_path = "resnet18.onnx" torch.onnx.export(model, dummy_input, onnx_path, verbose=True, input_names=input_names, output_names=output_names) ``` 3. 导入 ONNX 模型: ```python import onnx # 加载 ONNX 模型 onnx_path = "resnet18.onnx" model = onnx.load(onnx_path) ``` ### 导出为 TensorRT 格式 1. 安装 TensorRT 并设置环境变量: ```python # 安装 TensorRT !pip install nvidia-pyindex !pip install nvidia-tensorrt # 设置 TensorRT 环境变量 import os os.environ["LD_LIBRARY_PATH"] += ":/usr/local/cuda/lib64:/usr/lib/x86_64-linux-gnu" ``` 2. 加载 Pytorch 模型并将其转换为 TensorRT 模型: ```python import tensorrt as trt import pycuda.driver as cuda import torch import torchvision # 加载 Pytorch 模型 model = torchvision.models.resnet18(pretrained=True) # 转换为 TensorRT 模型 TRT_LOGGER = trt.Logger(trt.Logger.WARNING) trt_runtime = trt.Runtime(TRT_LOGGER) with trt.Builder(TRT_LOGGER) as builder, builder.create_network() as network, trt.OnnxParser(network, TRT_LOGGER) as parser: builder.max_workspace_size = 1 << 30 builder.max_batch_size = 1 # 加载 ONNX 模型 onnx_path = "resnet18.onnx" with open(onnx_path, "rb") as f: parser.parse(f.read()) # 构建 TensorRT 引擎 engine = builder.build_cuda_engine(network) # 保存 TensorRT 引擎 with open("resnet18.trt", "wb") as f: f.write(engine.serialize()) ``` 3. 导入 TensorRT 模型: ```python import tensorrt as trt # 加载 TensorRT 模型 trt_path = "resnet18.trt" with open(trt_path, "rb") as f, trt.Runtime(trt.Logger(trt.Logger.WARNING)) as runtime: engine = runtime.deserialize_cuda_engine(f.read()) ```
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值