LASSO vs GridSearchCV

LASSO

定义

LASSO(Least Absolute Shrinkage and Selection Operator)是一种在统计学和机器学习中常用的回归分析方法。

目的

主要目的是增强模型的预测精度和可解释性,通过对系数进行收缩来实现变量的选择和复杂度的控制。LASSO特别适合于处理具有多重共线性(即输入变量高度相关)或者数据特征数量远大于样本数量的情况。

使用方法

  1. **数据准备:**首先,你需要准备你的数据集,包括自变量(特征)和因变量(目标变量)。
  2. **选择模型:**在适用的软件或编程语言(如Python、R等)中选择LASSO回归模型。
  3. **参数设置:**LASSO的关键参数是正则化参数λ(有时也称为α)。这个参数控制着模型对系数的收缩程度。λ值越大,收缩越强,更多的系数被设置为零,从而实现特征选择。
  4. **模型训练:**使用你的数据来训练LASSO模型。在这个过程中,模型会学习数据特征和目标变量之间的关系,并决定哪些特征是重要的。
  5. **交叉验证:**为了找到最佳的λ值,通常需要通过交叉验证来评估不同λ值下模型的性能。
  6. **模型评估:**一旦选择了最优的λ值,就可以使用这个参数来训练最终模型,并评估其在测试数据集上的性能。
  7. **解释结果:**最后,你可以解释模型的输出,查看哪些变量被选中,以及它们对预测的贡献程度。

原理

ASSO回归是一种线性回归的形式,它在损失函数中加入了一个正则化项。这个正则化项是系数的绝对值之和,乘以一个调整参数λ。LASSO的目的是最小化以下公式:
在这里插入图片描述
其中, y i y_i yi是观测值, x i j x_{ij} xij是特征值, β j \beta_j βj是系数, λ \lambda λ是正则化参数。通过调整λ的值,可以控制正则化的强度。LASSO倾向于将一些系数完全压缩至零,从而实现特征选择。

示例

# 导入必要的库
import numpy as np
from sklearn.linear_model import Lasso
from sklearn.model_selection import train_test_split
from sklearn.metrics import mean_squared_error

# 创建虚构数据集
np.random.seed(0)  # 确保可重复性
X = np.random.rand(100, 10)  # 100个样本,10个特征
y = np.dot(X, np.array([1.5, -2., 0., 0., 3., 0., 0., 0., 0., 0.])) + np.random.randn(100) * 0.5

# 划分数据集为训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=0)

# 创建LASSO回归模型
lasso = Lasso(alpha=0.1)  # alpha是λ的同义词

# 训练模型
lasso.fit(X_train, y_train)

# 预测测试集
y_pred = lasso.predict(X_test)

# 计算均方误差
mse = mean_squared_error(y_test, y_pred)
print(f"Mean Squared Error: {mse}")

# 查看选择的特征(非零系数)
print(f"Coefficients: {lasso.coef_}")

在这个示例中,我们首先创建了一个虚构的数据集,其中一些特征是有影响的(具有非零系数),而其他特征则是无关的(系数为零)。通过使用LASSO回归,我们试图识别出有影响的特征。 a l p h a alpha alpha参数是 λ \lambda λ的同义词,在这里我们设置为0.1。LASSO模型会试图将一些系数减少到零,从而实现特征选择。最后,我们计算了模型在测试集上的均方误差,并打印出非零系数来查看哪些特征被选中。

总结

  • 性质: LASSO是一种线性回归技术,它通过引入一个正则化项(即系数的绝对值之和)来惩罚模型的复杂性。这种正则化有助于减少过拟合,特别是在特征数量多于样本数量的情况下。
  • 目的: LASSO的主要目标是特征选择和模型简化。它通过将一些回归系数减少到零来实现这一点,从而简化模型并突出显示最重要的特征。
  • 应用: LASSO用于建立线性模型,特别适合于高维数据集。

GridSearchCV

定义

GridSearchCV 是一个强大的工具,用于在机器学习模型中自动寻找最佳的超参数。

目的

通过遍历所有给定的超参数组合,并使用交叉验证来评估每一组合的性能,从而找到最佳的超参数设置。

使用方法

  1. 选择模型:首先确定你要使用的机器学习模型,例如决策树、SVM、线性回归等。
  2. 定义参数网格:列出你想要优化的超参数,以及你想要尝试的它们的值。这些值将构成一个“网格”。
  3. 配置 GridSearchCV:设置 GridSearchCV,指定模型、参数网格、评分方法以及交叉验证的细节。
  4. 训练模型:使用 GridSearchCV 对象训练模型。它将遍历所有的参数组合,并使用交叉验证来评估每个组合的性能。
  5. 评估结果:选择表现最佳的参数组合,并使用这些参数来构建最终模型。

原理

网格搜索(Grid Search)

  1. 参数网格定义:在网格搜索中,首先定义一个参数网格。这个网格包含了模型可能使用的各种超参数及其候选值。例如,对于支持向量机( S V M SVM SVM),参数网格可能包括不同的 C C C(正则化参数)、 g a m m a gamma gamma(核函数的参数)和 k e r n e l kernel kernel(核类型)的值。

  2. 遍历所有可能的参数组合:网格搜索的核心是遍历这个参数网格中的所有可能的参数组合。对于每一种组合,模型都会被训练并评估其性能。

交叉验证(Cross-Validation)

  1. 数据分割:交叉验证是一种评估模型泛化能力的方法。它将数据集分割成若干份(通常是相同大小的子集),例如 5 5 5份或 10 10 10份。

  2. 迭代训练与验证:在每一轮迭代中,一份子集被保留作为验证数据,其余的子集用于训练模型。这个过程重复多次,每次选择不同的子集作为验证数据。

  3. 性能度量:在每一轮迭代中,都会对模型进行评估(比如准确度、 F 1 F1 F1分数等),并且最终的性能度量是这些评估结果的平均值。这有助于减少模型因数据分割不同而产生的性能波动。

总结

G r i d S e a r c h C V GridSearchCV GridSearchCV 结合了网格搜索和交叉验证的优点。它通过网格搜索遍历所有的参数组合,并使用交叉验证来评估每一组合的性能。

  • 全面性:通过系统地搜索所有的参数组合, G r i d S e a r c h C V GridSearchCV GridSearchCV确保了不会错过任何潜在的最佳参数组合。
  • 稳健性:通过交叉验证, G r i d S e a r c h C V GridSearchCV GridSearchCV 能够评估模型在不同子集上的性能,从而提供关于模型泛化能力的更准确的估计。

总之, G r i d S e a r c h C V GridSearchCV GridSearchCV 的原理在于它提供了一种系统的方法来探索多种参数组合,并利用交叉验证来找出最能提高模型性能的参数设置。这种方法虽然计算量较大,但能够显著提高模型的准确性和可靠性。

示例

from sklearn import svm, datasets
from sklearn.model_selection import GridSearchCV

# 加载数据集(例如鸢尾花数据集)
iris = datasets.load_iris()
X, y = iris.data, iris.target

# 创建SVM模型
model = svm.SVC()

# 定义要优化的参数网格
param_grid = {
    'C': [0.1, 1, 10, 100],  # SVM正则化参数
    'gamma': [1, 0.1, 0.01, 0.001],  # 核函数参数
    'kernel': ['rbf', 'linear']  # 核类型
}

# 配置GridSearchCV
grid_search = GridSearchCV(model, param_grid, refit=True, verbose=2, cv=5)

# 训练模型
grid_search.fit(X, y)

# 查看最佳参数
print("Best Parameters Found: ")
print(grid_search.best_params_)

# 使用最佳参数的模型进行预测
best_model = grid_search.best_estimator_
predictions = best_model.predict(X)

# 这里可以添加评估模型性能的代码(例如准确率、混淆矩阵等)

在这个示例中,我们使用鸢尾花数据集,尝试不同的 C C C(正则化参数)、 g a m m a gamma gamma(核函数参数)和 k e r n e l kernel kernel(核类型)来优化 S V M SVM SVM模型。 G r i d S e a r c h C V GridSearchCV GridSearchCV遍历所有可能的参数组合,并使用 5 5 5折交叉验证来评估每个组合的性能。最后,我们输出最佳参数组合,并用这些参数构建最终模型。

总结

  • 性质: GridSearchCV是一种模型超参数优化技术。它不是一种独立的统计或机器学习模型,而是一种用于确定最佳模型配置的方法。
  • 目的: GridSearchCV的目的是通过系统地遍历多种参数组合来找到给定模型的最佳参数(例如,LASSO中的正则化强度λ)。它通常与交叉验证结合使用,以评估每组参数的效果,并选择表现最佳的一组。
  • 应用: GridSearchCV可以应用于几乎任何类型的机器学习模型,包括LASSO。它帮助找到使模型性能最优化的参数设置。

总结

  • LASSO 是一种特定类型的回归模型,用于数据分析和特征选择。
  • GridSearchCV 是一种模型优化工具,用于自动寻找和验证最优的模型参数。
  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

trust Tomorrow

感谢支持!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值