HCM一体化云解决方案提供商肯耐珂萨完成D1轮融资,景林股权投资领投

近日,肯耐珂萨宣布完成数亿元D1轮融资,由景林股权投资领投,多维海拓担任独家财务顾问。肯耐珂萨是中国领先的人力资本管理(HCM)一体化云解决方案提供商,此前曾获摩根士丹利旗下所管理的亚洲私募股权投资基金(摩根亚洲基金)、君联资本、东方富海等知名机构的数轮投资。

D1轮融资的完成,无疑展现了资本市场对人力资源科技赛道领跑者肯耐珂萨的高度认可和持续投入,并将进一步助力公司奠定行业龙头地位。本轮融资后,肯耐珂萨将加速推动一体化人力资本云平台和SaaS、PaaS、AI等关键技术的产品升级,并系统运用于全场景的人力资本管理,重构HCM市场。

定义未来人力资源管理

当前,中国人力资源服务市场总规模已超过2万亿,其中HCM云服务市场占比仅为3%左右,与北美成熟市场近20%的渗透率相比差距显著。而且行业产品大多仅围绕单一模块提供服务、解决单一需求点的有限问题,缺乏HR专业理解能力。HR SaaS不是简单的流程、表单线上化的工具软件,而是通过将先进方法论、最佳管理实践、行业优秀经验等转化为标准化、智能化的在线产品,打通底层数据,满足企业客户人力资本管理的全场景需求。

肯耐珂萨认为,满足人力资本管理数字化、整体化需求的一体化解决方案将是市场前进方向。“ 数字化正在重构企业的人力资本管理,HR专业内容与信息化技术融合,为精细化管理提供了强有力的数字助手“,肯耐珂萨创始人、CEO沈健强调道,“这场数字化转型并非简单的单点应用,它是一个多场景的、全流程的演变”。针对这一痛点,肯耐珂萨以“专业化+一体化+轻量化”构建HCM应用体系的闭环产品集群。公司HCM云服务体系分为四层,覆盖了组织中个体“人”的“选用育留汰”的全生命周期,并跨越到组织层面的建设:

核心能力突出,与腾讯建立深度合作

肯耐珂萨作为行业中领跑的HCM一体化云解决方案提供商,“金字塔”四层产品体系满足企业全场景需求,并且在2019年推出颠覆性的无代码应用开发平台X Galaxy PaaS,使得业务场景可以转化为业务对象模型,灵活扩展系统,从而提升了行业PaaS标准高度。

公司独家拥有中国顶级的“组织能力杨三角”知识产权商业化授权,独创40+项专业方法论,麦朵平台上线自主研发课程近千门,棱镜系统汇集上亿条企业人力资源管理数据,“技术+内容+服务”占据行业制高点。

基于强大的技术能力,公司已累计服务超过20,000家客户,在互联网、医药、汽车制造、金融、新零售、房地产等行业积累了大量客户最佳实践,其中包括腾讯控股、中国平安、优衣库等诸多中外500强企业,并获得高度认可。得益于在人力资本管理云服务领域的专业领先性,肯耐珂萨成为目前腾讯在HCM领域的唯一核心伙伴,相继入选腾讯首期SaaS加速器、成为SaaS臻选首批合作伙伴,并以核心成员身份加入腾讯SaaS技术联盟,共建SaaS生态。

疫情期间,肯耐珂萨积极响应号召、主动作为,为客户提供远程解决方案,以在线化、数字化方式帮助HR在「员工动向」、「健康打卡」、「视频面试」、「在线学习」、「在线人事」、「在线调研」等高频场景做好工作协同。

资本助力,加速前行

本轮融资领投方景林是中国最大的资产管理机构之一。景林股权投资相关负责人表示:“人力资源数字化转型是企业管理的刚性需求,也是我国人力资本管理(HCM)行业发展的必然方向和趋势。依托独特的方法论、全模块产品和先进的技术,肯耐珂萨已经发展成为中国HCM一体化云解决方案的龙头企业。作为一家股权投资机构,我们很高兴有机会与肯耐珂萨这样优秀的SaaS企业携手合作,参与并助力我国人力资源管理数字化的转型。”

作为肯耐珂萨的独家财务顾问,多维海拓董事总经理曹芳宁认为:“HCM人力资本管理市场规模巨大,行业未来将继续朝着专业化、一体化、轻量化的方向发展,肯耐珂萨作为中国最大的人力资本管理一体化云解决方案提供商,有全球顶尖的专家团队支持及独家的方法论IP,具备SaaS+PaaS+AI技术能力,服务了中国最优质的客户群体,我们很高兴能见证这样有行业引领能力的优质企业的迭代与发展。“

提供的源码资源涵盖了Java应用等多个领域,每个领域都包含了丰富的实例和项目。这些源码都是基于各自平台的最新技术和标准编写,确保了在对应环境下能够无缝运行。同时,源码中配备了详细的注释和文档,帮助用户快速理解代码结构和实现逻辑。 适用人群: 适合毕业设计、课程设计作业。这些源码资源特别适合大学生群体。无论你是计算机相关专业的学生,还是对其他领域编程感兴趣的学生,这些资源都能为你提供宝贵的学习和实践机会。通过学习和运行这些源码,你可以掌握各平台开发的基础知识,提升编程能力和项目实战经验。 使用场景及目标: 在学习阶段,你可以利用这些源码资源进行课程实践、课外项目或毕业设计。通过分析和运行源码,你将深入了解各平台开发的技术细节和最佳实践,逐步培养起自己的项目开发和问题解决能力。此外,在求职或创业过程中,具备跨平台开发能力的大学生将更具竞争力。 其他说明: 为了确保源码资源的可运行性和易用性,特别注意了以下几点:首先,每份源码都提供了详细的运行环境和依赖说明,确保用户能够轻松搭建起开发环境;其次,源码中的注释和文档都非常完善,方便用户快速上手和理解代码;最后,我会定期更新这些源码资源,以适应各平台技术的最新发展和市场需求。 所有源码均经过严格测试,可以直接运行,可以放心下载使用。有任何使用问题欢迎随时与博主沟通,第一时间进行解答!
内容概要:本文详细介绍了结合卷积神经网络(CNN)、双向长短期记忆网络(BiLSTM)和分位数回归(QR)的时间序列区间预测模型——QRCNN-BiLSTM。文章首先阐述了该项目背景及其必要性,指出时间序列预测面临的各种挑战以及QRCNN-BiLSTM相对于传统方法所拥有的优势。接下来,文章探讨了模型的设计理念和技术细节,其中包括如何融合CNN与BiLSTM的优点,以及引入分位数回归来提升预测结果的可信度和鲁棒性。文中还提供了详细的程序实现指南,涵盖了数据预处理、特征提取、分位数回归、模型训练与评估等多个方面的具体内容,并附上了Python代码示例。最后,文章讨论了一些关键技术和实施技巧,像防止过拟合措施、GUI界面开发等内容,确保用户可以轻松地部署应用程序,同时也强调了对未来研究方向的一些展望。 适合人群:对于有一定机器学习基础、特别是对时间序列分析有兴趣的学习者和从业者而言,本篇文章非常适合。它不仅可以作为新手入门的最佳教材,也可以为经验丰富的研究人员提供宝贵的参考资料。 使用场景及目标:本项目适用于各类涉及时间序列预测的应用场合,比如金融市场分析、气候变迁预测、能源消耗规划等,旨在为客户提供精准且稳定的预测服务,同时借助分位数回归提供的置信区间帮助客户更好地理解和应对预测中的不确定性。 其他说明:除了理论讲解外,文档还给出了详尽的实际操作步骤,使用户能够在实践中快速掌握该技术;并特别提到了几个容易忽视却又至关重要的环节(如数据清洗、模型优化等),提醒开发者们在真实世界的应用当中不可松懈任何一个步骤。此外,作者还在结尾处鼓励大家探索更前沿的技术可能性(例如引入强化学习机制、采用分布式训练方式等等),希望借此推动行业的持续进步和发展。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值