hashmap 属于Java集合中经常使用的一种数据结构,他是一种快存快取的数据结构。如何实现快素存取是重点。我们都知道 数组 是一种寻址快速,插入 修改较慢的数据结构,链表刚好相反,寻址慢,插入,修改快。而hashmap综合了两者的特性。本文参照JDK1.6进行分析介绍hashmap的实现原理,如何保证快存快取。
1.什么是hashmap
hashmap首先是用一个数组实现的,每个数组内部存储的是Entry,我们往map中存放元素和取出元素实际上是从这个数组中存放和取出的。
/**
* 存储数据的 table ,也就是hashmap最主要的table ,其中存储的是node.
*/
transient com.sjjg.hashmap.Node<K,V>[] table;
这里源码中的node是实现了Entry 接口的,每个Entry 内部都维护了下一个Entry的引用,因此组成了一个Entry的链表结构。
源码如下:
/**
hashmap 中维护了一个ENTRY的链表,这是链表的节点
node 是实现了Map.Entry<K,V> 的静态内部类
*/
static class Node<K,V> implements Map.Entry<K,V> {
final int hash;
final K key;
V value;
//这里维护了一个指向下一个节点的引用
Node<K,V> next;
Node(int hash, K key, V value, Node<K,V> next) {
this.hash = hash;
this.key = key;
this.value = value;
this.next = next;
}
public final K getKey() { return key; }
public final V getValue() { return value; }
public final String toString() { return key + "=" + value; }
//重写的hashCode.
public final int hashCode() {
return Objects.hashCode(key) ^ Objects.hashCode(value);
}
public final V setValue(V newValue) {
V oldValue = value;
value = newValue;
return oldValue;
}
//重写的equals
public final boolean equals(Object o) {
if (o == this)
return true;
if (o instanceof Map.Entry) {
Map.Entry<?,?> e = (Map.Entry<?,?>)o;
//这里实际上使用的是 key 和value 内部的equals方法进行比较
if (Objects.equals(key, e.getKey()) &&
Objects.equals(value, e.getValue()))
return true;
}
return false;
}
}
所有hashmap形成了如下的数据结构。
2.如何保证快速存
hashmap中元素的存是一个个的键值对,当我们调用put(k,v);方法的时候hashmap有如下几个步骤:
①计算键值对 中key的哈希值,通过哈希值再经过一系列计算获取key需要存储在entry数组table的那个位置。也就是数组table的下标。
②判断这个位置是否已经存在元素,如果没有直接存,如果有,判断是否key相等,如果相等覆盖之前的value值。如果不相等那么就把之前该位置上的元素往下移动,这个移动非常快速,就是把新加元素的指针指向原有元素。
3.如何保证快速取
hashmap要想取出某个元素需要先定位该元素,定位是通过key的hash值计算出key所属的entry在table数组中的那个位置上,通过数组下标快速定位该位置,因为该位置存放的是entry链表的头,从entry链表的头开始遍历,判断entry中是否有key的值和当前传入的key相等(这里相等是通过key的equals方法判断),如果有,拿到entry的value值返回,如果没有则返回空。
4.源码分析
public class HashMap<K,V>
extends AbstractMap<K,V>
implements Map<K,V>, Cloneable, Serializable
{
/**
* 默认的容量
*/
static final int DEFAULT_INITIAL_CAPACITY = 16;
/**
* 最大容量
*/
static final int MAXIMUM_CAPACITY = 1 << 30;
/**
* 默认的容量因子
*/
static final float DEFAULT_LOAD_FACTOR = 0.75f;
/**
* 存储数据的table 我们的键值对都放在这里面,table的长度保证是2的N次方
*/
transient Entry[] table;
/**
* 有多少个键值对
*/
transient int size;
/**
* 下一次需要扩容的 键值对的数量.
*/
int threshold;
/**
* 当前map的容量因子
*/
final float loadFactor;
/**
* map被修改过的次数
*/
transient volatile int modCount;
/**
* 通过容量因子和容量构造map
*/
public HashMap(int initialCapacity, float loadFactor) {
if (initialCapacity < 0)
throw new IllegalArgumentException("Illegal initial capacity: " +
initialCapacity);
if (initialCapacity > MAXIMUM_CAPACITY)
initialCapacity = MAXIMUM_CAPACITY;
if (loadFactor <= 0 || Float.isNaN(loadFactor))
throw new IllegalArgumentException("Illegal load factor: " +
loadFactor);
// Find a power of 2 >= initialCapacity
int capacity = 1;
while (capacity < initialCapacity)
capacity <<= 1;
this.loadFactor = loadFactor;
threshold = (int)(capacity * loadFactor);
table = new Entry[capacity];
init();
}
/**
* Constructs an empty <tt>HashMap</tt> with the specified initial
*/
public HashMap(int initialCapacity) {
this(initialCapacity, DEFAULT_LOAD_FACTOR);
}
/**
* 默认的hashmap 容量16 因子0.75
*/
public HashMap() {
this.loadFactor = DEFAULT_LOAD_FACTOR;
threshold = (int)(DEFAULT_INITIAL_CAPACITY * DEFAULT_LOAD_FACTOR);
table = new Entry[DEFAULT_INITIAL_CAPACITY];
init();
}
/**
* 通过map构造一个map ,传入的map若为空则会出现空指针
*/
public HashMap(Map<? extends K, ? extends V> m) {
this(Math.max((int) (m.size() / DEFAULT_LOAD_FACTOR) + 1,
DEFAULT_INITIAL_CAPACITY), DEFAULT_LOAD_FACTOR);
putAllForCreate(m);
}
/**
* 遍历 传入的map。拿到每个entry的key和value 往table中放。
*/
private void putAllForCreate(Map<? extends K, ? extends V> m) {
for (Iterator<? extends Map.Entry<? extends K, ? extends V>> i = m.entrySet().iterator(); i.hasNext(); ) {
Map.Entry<? extends K, ? extends V> e = i.next();
putForCreate(e.getKey(), e.getValue());
}
}
private void putForCreate(K key, V value) {
int hash = (key == null) ? 0 : hash(key.hashCode());
int i = indexFor(hash, table.length);
for (Entry<K,V> e = table[i]; e != null; e = e.next) {
Object k;
if (e.hash == hash &&
((k = e.key) == key || (key != null && key.equals(k)))) {
e.value = value;
return;
}
}
createEntry(hash, key, value, i);
}
//给table 中的位置 赋值
void createEntry(int hash, K key, V value, int bucketIndex) {
Entry<K,V> e = table[bucketIndex];
table[bucketIndex] = new Entry<K,V>(hash, key, value, e);
size++;
}
/**
* 可以认为是构造完成map的回调
*/
void init() {
}
/**
* 哈希算法,通过哈希来进行散列,尽量保证不碰撞
*/
static int hash(int h) {
h ^= (h >>> 20) ^ (h >>> 12);
return h ^ (h >>> 7) ^ (h >>> 4);
}
/**
* 根据哈希值和table的长度获取table的下标值
*/
static int indexFor(int h, int length) {
return h & (length-1);
}
/**
* map中有多少个键值对
*/
public int size() {
return size;
}
/**
* 是否空
*/
public boolean isEmpty() {
return size == 0;
}
/**
* 取值的方法
*/
public V get(Object key) {
//如果key是空那么就存空
if (key == null)
return getForNullKey();
//根据key通过哈希算出哈希值
int hash = hash(key.hashCode());
//根据哈希值拿到下标,得到该位置的entry
//变量该位置的所有entry,遍历判断每个的key的哈希值是否相同
// 以及key是否相等这里判断是使用key 的 equals方法或者key的地址值进行判断的
//存在相等的返回 value,不存在返回null、
for (Entry<K,V> e = table[indexFor(hash, table.length)];
e != null;
e = e.next) {
Object k;
if (e.hash == hash && ((k = e.key) == key || key.equals(k)))
return e.value;
}
return null;
}
/**
* key为空的值是存在于table的第一个位置,如果
* 这个位置没有那么就返回空
*/
private V getForNullKey() {
for (Entry<K,V> e = table[0]; e != null; e = e.next) {
if (e.key == null)
return e.value;
}
return null;
}
/**
* 是否包含某个KEY
*/
public boolean containsKey(Object key) {
return getEntry(key) != null;
}
/**
* 返回key对应的entry的值,如果没有返回空
*/
final Entry<K,V> getEntry(Object key) {
int hash = (key == null) ? 0 : hash(key.hashCode());
for (Entry<K,V> e = table[indexFor(hash, table.length)];
e != null;
e = e.next) {
Object k;
if (e.hash == hash &&
((k = e.key) == key || (key != null && key.equals(k))))
return e;
}
return null;
}
/**
* 存值
*/
public V put(K key, V value) {
if (key == null)
return putForNullKey(value);
// 计算key的哈希值
int hash = hash(key.hashCode());
//根据哈希值算出key所在table中哪个位置 I
int i = indexFor(hash, table.length);
//遍历 entry 链表 判断是否key已经存在,若存在则替换value,并且返回旧的value
for (Entry<K,V> e = table[i]; e != null; e = e.next) {
Object k;
if (e.hash == hash && ((k = e.key) == key || key.equals(k))) {
V oldValue = e.value;
e.value = value;
e.recordAccess(this);
return oldValue;
}
}
//修改计数加一
modCount++;
//若key是新的值添加entry
//在这里 还进行了是否扩容的判断
addEntry(hash, key, value, i);
//返回空 说明添加成功
return null;
}
/**
* 存空值的方法
*/
private V putForNullKey(V value) {
//遍历table第一个位置中的链表,如果有空值的key那么替换之前的value返回旧的value
for (Entry<K,V> e = table[0]; e != null; e = e.next) {
if (e.key == null) {
V oldValue = e.value;
e.value = value;
e.recordAccess(this);
return oldValue;
}
}
//记录修改
modCount++;
//添加了新的键值对
addEntry(0, null, value, 0);
return null;
}
/**
*添加新键值对
*/
void addEntry(int hash, K key, V value, int bucketIndex) {
//获取bucketIndex 位置旧的键值对
Entry<K,V> e = table[bucketIndex];
//创建新的键值对,传入了旧的键值对 。这里在新的键值对中 有引用指向旧的键值对
//相当于在链表 头部增加一个 entry
table[bucketIndex] = new Entry<K,V>(hash, key, value, e);
//判断size 是否大于等于 需要扩容的数量,如果是进行扩容
if (size++ >= threshold)
resize(2 * table.length);
}
/**
* 扩容操作 传入新的容量
*/
void resize(int newCapacity) {
//获取旧的table 和长度
Entry[] oldTable = table;
int oldCapacity = oldTable.length;
//判断是否是最大长度,如果是下次扩容的数量是INT 最大值
if (oldCapacity == MAXIMUM_CAPACITY) {
threshold = Integer.MAX_VALUE;
return;
}
//创建一个新的大小的数组
Entry[] newTable = new Entry[newCapacity];
//重新进行散列计算,把旧的键值对entry放入新的table数组中
transfer(newTable);
//table指向新的table
table = newTable;
//记录下次需要扩容的数量
threshold = (int)(newCapacity * loadFactor);
}
/**
* 重新进行散列计算,把旧的键值对entry放入新的table数组中
*/
void transfer(Entry[] newTable) {
Entry[] src = table;
int newCapacity = newTable.length;
for (int j = 0; j < src.length; j++) {
Entry<K,V> e = src[j];
if (e != null) {
src[j] = null;
do {
Entry<K,V> next = e.next;
int i = indexFor(e.hash, newCapacity);
e.next = newTable[i];
newTable[i] = e;
e = next;
} while (e != null);
}
}
}