信息增益比和信息增益

  1. 信息增益
    熵: H ( X ) = − ∑ i = 1 k p i log ⁡ p i H(X) = -\sum_{i=1}^k p_i\log p_i H(X)=i=1kpilogpi
    条件熵: H ( X ∣ Y ) = − ∑ j = 1 n p ( y j ) H ( X ∣ y j ) = − ∑ j = 1 n p ( y j ) ∑ i = 1 k p ( x i ∣ y j ) log ⁡ p ( x i ∣ y j ) H(X|Y) =-\sum_{j=1}^n p(y_j)H(X|y_j) =-\sum_{j=1}^n p(y_j) \sum_{i=1}^k p(x_i|y_j)\log p(x_i|y_j) H(XY)=j=1np(yj)H(Xyj)=j=1np(yj)i=1kp(xiyj)logp(xiyj)
    信息增益: g ( D , A ) = H ( D ) − H ( D ∣ A ) g(D,A) = H(D) - H(D|A) g(D,A)=H(D)H(DA)
    信息增益代表利用特征A对数据集D分类后混乱程度降低了多少。信息增益越大,分类性越强。
    但是,信息增益往往会偏向于选出取值较多的特征,但这些特征有可能是无意义的特征,例如用户ID、学号、日期等。如果选择取值较多的特征,会使决策树分支过多。
  2. 信息增益比
    g R ( D , A ) = g ( D , A ) H A ( D ) g_R(D,A) = \frac{g(D,A)}{H_A(D)} gR(D,A)=HA(D)g(D,A)
    H A ( D ) = − ∑ i = 1 n p i log ⁡ p i H_A(D) =- \sum_{i=1}^np_i\log p_i HA(D)=i=1npilogpi,其中 p i = P ( A特征取值为 a i ) p_i = P(\text{A特征取值为}a_i) pi=P(A特征取值为ai)
    H A ( D ) H_A(D) HA(D)属于对信息增益的惩罚参数,特征A取值越多惩罚参数越大,取值越少惩罚参数越小;从而克服信息增益偏向于选取取值较多的特征的问题。
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值