问题
在我的一个传统图像处理项目中用到了图像配准技术,太久都忘了,为了防止面试被问到答不上来,这里还是要简要总结下。关于图像配准的概念,在另一个问题 “13_图像拼接原理介绍” 中也大体上介绍了一下,不过没那么详细。
随着技术的发展,图像配准已经有了深度学习的方法,但是我们这里讨论的还是传统的基于特征的方法。
图像配准流程
假设我们要对一张参考图像和一张待配准图像之间进行图像配准,主要基于三个步骤:关键点检测和特征描述,特征匹配,图像变形。简而言之,我们在两幅图像中选择兴趣点,将参考图像中的每个兴趣点和它在待配准图像中的对应点关联起来,然后对待批准图像进行变换,这样两幅图像就得以对齐。
关键点检测和特征描述
关键点就是感兴趣的点。它定义了一幅图像中重要并且有特点的地方(如角,边等)。每个关键点都由一个描述子(包含关键点本质特点的特征向量)表征。描述子应该对图像变换(如位置变换、缩放变换、亮度变换等)是鲁棒的。很多算法都要执行关键点检测和特征描述,主流的关键点检测算法有:
<

本文介绍了图像配准的传统方法,重点关注SIFT(尺度不变特征变换)算法。SIFT包括创建比例空间、关键点检测、方向匹配和关键信息描述符四个步骤。在特征匹配后,通过单应性变换实现图像变形,完成配准。SIFT算法对尺度、旋转和亮度变化具有鲁棒性,是图像处理中的重要工具。
订阅专栏 解锁全文
1210

被折叠的 条评论
为什么被折叠?



