找出DataFrame中指定数据类型的列:select_dtypes()函数

本文通过一个具体的例子介绍了如何使用pandas库中的select_dtypes()函数来筛选DataFrame中特定数据类型的列。该函数提供了两种方式:一是通过include参数来指定包含的数据类型;二是通过exclude参数来排除特定的数据类型。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

【小白从小学Python、C、Java】
【计算机等级考试+500强双证书】
【Python-数据分析】
找出DataFrame中指定数据类型的列
select_dtypes()函数

选择题
下列说法错误的是?
import pandas as pd

myDF = pd.DataFrame({'A':[1,2],'B':[1.0,2.0],'C':['a','b']})
print("【显示】myDF")
print(myDF)
print("【执行】myDF.select_dtypes(include=['int64'])")
print(myDF.select_dtypes(include=['int64']))
print("【执行】myDF.select_dtypes(exclude=['int64'])")
print(myDF.select_dtypes(exclude=['int64']))

A选项:myDF是一个三行三列的数据
B选项:第一次执行找到myDF中的整型数据
C选项:第二次执行找到myDF中的整型数据
D选项:第二次执行排除了myDF中的整型数据

正确答案:C

图1:问题解析

图2:程序运行结果


温馨期待
期待大家提出宝贵建议,互相交流,收获更大,助教:dqf

欢迎大家转发,一起传播知识和正能量,帮助到更多人。期待大家提出宝贵改进建议,互相交流,收获更大。辛苦大家转发时注明出处(也是咱们公益编程交流群的入口网址),刘经纬老师共享知识相关文件下载地址为:https://liujingwei.cn

 

看起来你在尝试使用`select_dtypes`这个属性,但它实际上是Pandas DataFrame中的一个方法,而不是PySpark DataFrame。在PySpark中,你可以通过其他方式获取数据类型表。这里是修复这个问题的代码片段: 首先,你需要确认`df`是一个Pandas DataFrame而不是PySpark DataFrame。如果你是从CSV读取的是Pandas DataFrame,需要先转换成Spark DataFrame: ```python if isinstance(df, pd.DataFrame): spark_df = spark.createDataFrame(df) else: spark_df = df ``` 然后,你可以使用`dtypes`属性查看数据类型,但不能直接筛选特定类型的数据: ```python numeric_cols = spark_df.dtypes.filter(lambda x: str(x)[0] == 'i' or str(x)[0] == 'f').map(lambda s: s[0]) string_cols = spark_df.dtypes.filter(lambda x: str(x)[0] == 'O').map(lambda s: s[0]) # 通常用于字符串或分类数据 ``` 如果你想按数据类型做操作,可能需要遍历每一检查其类型: ```python numeric_transformations = {} for col in spark_df.columns: if spark_df[col].dtype in [T.IntegerType(), T.FloatType()]: # 判断是否为数值型 numeric_transformations[col] = ... # 进行相应的数值型处理 string_transformations = {} for col in string_cols: if ...: # 如果是分类数据 string_transformations[col] = ... # 进行独热编码或者其他处理 ``` 在这个例子中,`...` 表示你需要填写具体的处理逻辑。记得,PySpark DataFrame的操作通常会直接在原数据上进行修改,不需要像Pandas那样创建新的DataFrame。 如果`df`已经是PySpark DataFrame,并且确实存在`select_dtypes`错误,那可能是引入了某个包或模块的混淆,检查一下是否有额外的依赖可能导致了这个问题。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

刘经纬老师

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值