二维计算机视觉
主要回顾一些二维计算机视觉和图像处理的经典算法。
迷途小牛马
这个作者很懒,什么都没留下…
展开
-
图像分割-区域生长-python
区域生长是图像分割中的一种重要算法。它的基本思路是给定一个种子点,给定一个搜索范围,在这个所搜范围之内符合一定规则的点就是和种子点同一类别的点。依据这个思路,其基本步骤便是:1、给定种子点,将种子点加入种子序列2、将种子序列中的第一个元素弹出,搜索器范围(常用8邻域)符合规则的点,将该点加入种子序列。3、循环1,2,所有做过种子点的元素便是和最开始的种子点同一类别的元素。在这里:我们通常使用8邻域作为2D图像搜索范围,使用两个元素的欧氏距离为评估规则。我这里写了3D元素的代码,有兴趣的同原创 2021-07-26 14:32:41 · 4106 阅读 · 0 评论 -
图像分割-阈值分割-python-opencv
fff原创 2021-07-15 23:36:38 · 1138 阅读 · 3 评论 -
底层视觉-SIFT-python-opencv(2)
特征点表达(1)构建梯度直方图,找到主方向 以3 × 1.5????为半径区域,计算这个区域内的梯度,构建梯度直方图,确定主方向。(2)以主方向为中心取 8×8的窗口,并将其分成16个小区域,计算每一个小区域内8个方向的梯度直方图,这里我们将获得16x8=128 维的向量。(3)归一化 为了克服光照的影响,我们对128维的向量进行归一化处理SIFT特点:多尺度特征 光照鲁棒 旋转不变...原创 2021-07-14 17:25:24 · 159 阅读 · 0 评论 -
底层视觉-SIFT-python-opencv(1)
sss原创 2021-07-14 17:16:49 · 286 阅读 · 0 评论 -
底层视觉-角点检测-harris
v原创 2021-07-13 11:07:27 · 175 阅读 · 0 评论 -
opencv-python 直线检测、圆检测
直线检测:cv2.HoughLinesP()HoughLinesP(image, rho, theta, threshold, lines=None, minLineLength=None, maxLineGap=None) image: 必须是二值图像,推荐使用canny边缘检测的结果图像;rho:线段以像素为单位的距离精度,double类型的,推荐用1.0theta: 线段以弧度为单位的角度精度,推荐用numpy.pi/180threshod:累加平面的阈值参数,int类型,超过设原创 2021-06-29 21:46:37 · 511 阅读 · 0 评论 -
底层视觉-线段检测-霍夫变换-python
霍夫变换可以将空间坐标系下的一条直线转换到霍夫空间的一个点。一般情况下,霍夫空间,我们可以选择极坐标系。在极坐标系下,一个点可以表达空间坐标系下的一条直线,那么在极坐标系下越多点重合,说明在空间坐标系下这个对应的直线越有可能是一天直线。对于直线,空间坐标系和极坐标系的相互转换可以表达为: (1)所以使用霍夫变换检测线段的步骤如下:1、对图像进行边缘检测,并使之成为二值边缘图...原创 2021-06-29 21:14:02 · 615 阅读 · 0 评论 -
底层视觉-边缘检测-canny
图像边缘一般指的是图像前景和背景的过渡部分。在图像边缘区域,一般图像一阶微分(梯度)和二阶微分的值比较大。所以在很多情况下,我们可以使用计算图像一阶微分或者二阶微分的方式来计算图像边缘。在这方面可以参考上节内容:https://mp.csdn.net/mp_blog/creation/editor/118255298对于边缘检测,一个经典的算法是Canny。Canny算法有三个步骤:1、计算图像梯度幅值和方向。2、对1中得到的梯度做非极大值抑制,即在位置p的梯度方向和梯度反方向上去找n个梯度幅值原创 2021-06-28 15:08:08 · 314 阅读 · 0 评论 -
底层视觉-空间滤波-均值滤波-中值滤波-高斯低通滤波
kkk原创 2021-06-27 14:36:32 · 794 阅读 · 0 评论