自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(26)
  • 收藏
  • 关注

原创 神经网络量化(4)算子融合优化

5. shortcut->卷积。4. 多次矩阵乘->一次矩阵乘。3. 多次加法->一次。2. 卷积和BN的融合。1. 卷积+激活函数。

2023-04-14 17:53:11 442

原创 神经网络量化(3)-量化算子

矩阵乘法:矩阵加法:clip:exemple:非线性算子:1.查表2.线性模拟计算。

2023-04-14 17:10:08 298

原创 神经网络量化(2) 量化方法

1. Tensor整体使用一个scale和offset:会出现有些数据严重失真。

2023-04-14 15:27:44 515

原创 神经网络量化(1)

其实就是将FP32的数据转成int8便于提高计算速度。

2023-04-14 13:36:05 141

原创 openvino pyinstaller 打包问题

在打包后的openvino包中需要包含:libs文件夹中需包含:

2023-04-12 19:46:49 128

原创 pyinstaller 添加datas

datas=[(源地址,目标地址),(源地址,目标地址),(源地址,目标地址)]pathex=[源地址]

2023-04-12 19:37:53 529

原创 openvino pyinstaller 打包问题

plugins.xml,openvino_ir_frontend.dll,openvino_intel_cpu_plugin.dll添加入data。先处理干净python环境和openvino包。

2023-04-12 19:36:20 268

原创 合并Conv与BN的原理

经过训练后,我们可以得到保存下来的mean,var,A和B。

2023-04-11 15:02:40 160

原创 openvino 量化

2.将上述文件利用POT进行量化,在量化过程中,我们需要提供量化验证数据集和验证指标以保证量化后的效果。1. 将Onnnx文件转成Openvino格式。

2023-04-11 14:45:16 476

原创 jupyter notebook :遇到ImportError: cannot import name ‘soft_unicode’ from ‘markupsafe’问题

由于 markupsafe 弃用警告:“soft_unicode”已重命名为“soft_str”.旧名称将在 MarkupSafe 2.1 中删除.只能降低版本。

2023-04-11 14:39:15 204 1

原创 Pytorch合并Conv和BN并转onnx

【代码】Pytorch合并Conv和BN并转onnx。

2023-04-11 14:29:29 601

原创 计算摄影-相机模型(透镜模型)

由于小孔的大小难以平衡,所以现实中,我们往往采用透镜模型。:物体上不同平面的点在成像平面上会出现弥散圆,而在像距一定的情况下,能让物体清晰成像的距离范围就是景深。上式,N为光圈值,C为允许的最大弥散圆,即Permissible Circle of Confusion,U为物距,f为焦距。1.小孔小于一定程度时,会发生衍射现象,造成成像模糊,信噪比较低。2.小孔过大,成像面一个点存在来自物体的多个点的光,导致成像模糊。1. 同一镜头,物体离镜头更近时,像距需要增大,视场角变小。镜头能捕捉到的景物的范围。

2023-04-03 15:09:27 297

原创 计算摄影-相机模型(针孔相机模型)

相机模型

2023-03-29 16:36:24 344

原创 python list 反向

方法1:list(reversed(a)) reversed(a)返回的是迭代器,所以前面加个list转换为list方法2:sorted(a,reverse=True)方法3:a[: :-1]其中[::-1]代表从后向前取值,每次步进值为1...

2021-08-25 10:23:43 497

原创 leetcode-辅助栈

1、用两个栈实现一个队列。队列的声明如下,请实现它的两个函数 appendTail 和 deleteHead ,分别完成在队列尾部插入整数和在队列头部删除整数的功能。(若队列中没有元素,deleteHead操作返回 -1 )思路:一个栈A用来添加,一个b用来删除删除的时候判断b是否为空,为空需要将a中的数据反向加入B中,返回pop掉b中的最后一个class CQueue: def __init__(self): self.a,self.b=[],[] .

2021-08-24 10:17:37 157

原创 图像分割-区域生长-python

区域生长是图像分割中的一种重要算法。它的基本思路是给定一个种子点,给定一个搜索范围,在这个所搜范围之内符合一定规则的点就是和种子点同一类别的点。依据这个思路,其基本步骤便是:1、给定种子点,将种子点加入种子序列2、将种子序列中的第一个元素弹出,搜索器范围(常用8邻域)符合规则的点,将该点加入种子序列。3、循环1,2,所有做过种子点的元素便是和最开始的种子点同一类别的元素。在这里:我们通常使用8邻域作为2D图像搜索范围,使用两个元素的欧氏距离为评估规则。我这里写了3D元素的代码,有兴趣的同

2021-07-26 14:32:41 4097

原创 图像分割-阈值分割-python-opencv

fff

2021-07-15 23:36:38 1136 3

原创 底层视觉-SIFT-python-opencv(2)

特征点表达(1)构建梯度直方图,找到主方向 以3 × 1.5????为半径区域,计算这个区域内的梯度,构建梯度直方图,确定主方向。(2)以主方向为中心取 8×8的窗口,并将其分成16个小区域,计算每一个小区域内8个方向的梯度直方图,这里我们将获得16x8=128 维的向量。(3)归一化 为了克服光照的影响,我们对128维的向量进行归一化处理SIFT特点:多尺度特征 光照鲁棒 旋转不变...

2021-07-14 17:25:24 158

原创 底层视觉-SIFT-python-opencv(1)

sss

2021-07-14 17:16:49 285

原创 底层视觉-角点检测-harris

v

2021-07-13 11:07:27 174

原创 opencv-python 直线检测、圆检测

直线检测:cv2.HoughLinesP()HoughLinesP(image, rho, theta, threshold, lines=None, minLineLength=None, maxLineGap=None) image: 必须是二值图像,推荐使用canny边缘检测的结果图像;rho:线段以像素为单位的距离精度,double类型的,推荐用1.0theta: 线段以弧度为单位的角度精度,推荐用numpy.pi/180threshod:累加平面的阈值参数,int类型,超过设

2021-06-29 21:46:37 510

原创 底层视觉-线段检测-霍夫变换-python

霍夫变换可以将空间坐标系下的一条直线转换到霍夫空间的一个点。一般情况下,霍夫空间,我们可以选择极坐标系。在极坐标系下,一个点可以表达空间坐标系下的一条直线,那么在极坐标系下越多点重合,说明在空间坐标系下这个对应的直线越有可能是一天直线。对于直线,空间坐标系和极坐标系的相互转换可以表达为: (1)所以使用霍夫变换检测线段的步骤如下:1、对图像进行边缘检测,并使之成为二值边缘图...

2021-06-29 21:14:02 614

原创 matplotlib绘制多个子图

demoimportmatplotlib.pyplotaspltfig=plt.figure()ax=fig.add_subplot(221)ax.imshow(img1)ax=fig.add_subplot(222)ax.imshow(img2)ax.fig.add_subplot(223)ax.show(img)

2021-06-29 09:34:35 233

原创 底层视觉-边缘检测-canny

图像边缘一般指的是图像前景和背景的过渡部分。在图像边缘区域,一般图像一阶微分(梯度)和二阶微分的值比较大。所以在很多情况下,我们可以使用计算图像一阶微分或者二阶微分的方式来计算图像边缘。在这方面可以参考上节内容:https://mp.csdn.net/mp_blog/creation/editor/118255298对于边缘检测,一个经典的算法是Canny。Canny算法有三个步骤:1、计算图像梯度幅值和方向。2、对1中得到的梯度做非极大值抑制,即在位置p的梯度方向和梯度反方向上去找n个梯度幅值

2021-06-28 15:08:08 312

原创 底层视觉-空间滤波-均值滤波-中值滤波-高斯低通滤波

kkk

2021-06-27 14:36:32 793

原创 keras打印history的acc 和loss

import matplotlib.pyplot as plthistory=model.fit()plt.plot(history.history['loss'])plt.plot(history.history['val_loss'])plt.title("model loss")plt.ylabel("loss")plt.xlabel("epoch")plt.legend(["train",...

2018-04-04 21:01:40 23981 2

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除