- 博客(26)
- 收藏
- 关注
原创 神经网络量化(4)算子融合优化
5. shortcut->卷积。4. 多次矩阵乘->一次矩阵乘。3. 多次加法->一次。2. 卷积和BN的融合。1. 卷积+激活函数。
2023-04-14 17:53:11 442
原创 openvino pyinstaller 打包问题
plugins.xml,openvino_ir_frontend.dll,openvino_intel_cpu_plugin.dll添加入data。先处理干净python环境和openvino包。
2023-04-12 19:36:20 268
原创 openvino 量化
2.将上述文件利用POT进行量化,在量化过程中,我们需要提供量化验证数据集和验证指标以保证量化后的效果。1. 将Onnnx文件转成Openvino格式。
2023-04-11 14:45:16 476
原创 jupyter notebook :遇到ImportError: cannot import name ‘soft_unicode’ from ‘markupsafe’问题
由于 markupsafe 弃用警告:“soft_unicode”已重命名为“soft_str”.旧名称将在 MarkupSafe 2.1 中删除.只能降低版本。
2023-04-11 14:39:15 204 1
原创 计算摄影-相机模型(透镜模型)
由于小孔的大小难以平衡,所以现实中,我们往往采用透镜模型。:物体上不同平面的点在成像平面上会出现弥散圆,而在像距一定的情况下,能让物体清晰成像的距离范围就是景深。上式,N为光圈值,C为允许的最大弥散圆,即Permissible Circle of Confusion,U为物距,f为焦距。1.小孔小于一定程度时,会发生衍射现象,造成成像模糊,信噪比较低。2.小孔过大,成像面一个点存在来自物体的多个点的光,导致成像模糊。1. 同一镜头,物体离镜头更近时,像距需要增大,视场角变小。镜头能捕捉到的景物的范围。
2023-04-03 15:09:27 297
原创 python list 反向
方法1:list(reversed(a)) reversed(a)返回的是迭代器,所以前面加个list转换为list方法2:sorted(a,reverse=True)方法3:a[: :-1]其中[::-1]代表从后向前取值,每次步进值为1...
2021-08-25 10:23:43 497
原创 leetcode-辅助栈
1、用两个栈实现一个队列。队列的声明如下,请实现它的两个函数 appendTail 和 deleteHead ,分别完成在队列尾部插入整数和在队列头部删除整数的功能。(若队列中没有元素,deleteHead操作返回 -1 )思路:一个栈A用来添加,一个b用来删除删除的时候判断b是否为空,为空需要将a中的数据反向加入B中,返回pop掉b中的最后一个class CQueue: def __init__(self): self.a,self.b=[],[] .
2021-08-24 10:17:37 157
原创 图像分割-区域生长-python
区域生长是图像分割中的一种重要算法。它的基本思路是给定一个种子点,给定一个搜索范围,在这个所搜范围之内符合一定规则的点就是和种子点同一类别的点。依据这个思路,其基本步骤便是:1、给定种子点,将种子点加入种子序列2、将种子序列中的第一个元素弹出,搜索器范围(常用8邻域)符合规则的点,将该点加入种子序列。3、循环1,2,所有做过种子点的元素便是和最开始的种子点同一类别的元素。在这里:我们通常使用8邻域作为2D图像搜索范围,使用两个元素的欧氏距离为评估规则。我这里写了3D元素的代码,有兴趣的同
2021-07-26 14:32:41 4097
原创 底层视觉-SIFT-python-opencv(2)
特征点表达(1)构建梯度直方图,找到主方向 以3 × 1.5????为半径区域,计算这个区域内的梯度,构建梯度直方图,确定主方向。(2)以主方向为中心取 8×8的窗口,并将其分成16个小区域,计算每一个小区域内8个方向的梯度直方图,这里我们将获得16x8=128 维的向量。(3)归一化 为了克服光照的影响,我们对128维的向量进行归一化处理SIFT特点:多尺度特征 光照鲁棒 旋转不变...
2021-07-14 17:25:24 158
原创 opencv-python 直线检测、圆检测
直线检测:cv2.HoughLinesP()HoughLinesP(image, rho, theta, threshold, lines=None, minLineLength=None, maxLineGap=None) image: 必须是二值图像,推荐使用canny边缘检测的结果图像;rho:线段以像素为单位的距离精度,double类型的,推荐用1.0theta: 线段以弧度为单位的角度精度,推荐用numpy.pi/180threshod:累加平面的阈值参数,int类型,超过设
2021-06-29 21:46:37 510
原创 底层视觉-线段检测-霍夫变换-python
霍夫变换可以将空间坐标系下的一条直线转换到霍夫空间的一个点。一般情况下,霍夫空间,我们可以选择极坐标系。在极坐标系下,一个点可以表达空间坐标系下的一条直线,那么在极坐标系下越多点重合,说明在空间坐标系下这个对应的直线越有可能是一天直线。对于直线,空间坐标系和极坐标系的相互转换可以表达为: (1)所以使用霍夫变换检测线段的步骤如下:1、对图像进行边缘检测,并使之成为二值边缘图...
2021-06-29 21:14:02 614
原创 matplotlib绘制多个子图
demoimportmatplotlib.pyplotaspltfig=plt.figure()ax=fig.add_subplot(221)ax.imshow(img1)ax=fig.add_subplot(222)ax.imshow(img2)ax.fig.add_subplot(223)ax.show(img)
2021-06-29 09:34:35 233
原创 底层视觉-边缘检测-canny
图像边缘一般指的是图像前景和背景的过渡部分。在图像边缘区域,一般图像一阶微分(梯度)和二阶微分的值比较大。所以在很多情况下,我们可以使用计算图像一阶微分或者二阶微分的方式来计算图像边缘。在这方面可以参考上节内容:https://mp.csdn.net/mp_blog/creation/editor/118255298对于边缘检测,一个经典的算法是Canny。Canny算法有三个步骤:1、计算图像梯度幅值和方向。2、对1中得到的梯度做非极大值抑制,即在位置p的梯度方向和梯度反方向上去找n个梯度幅值
2021-06-28 15:08:08 312
原创 keras打印history的acc 和loss
import matplotlib.pyplot as plthistory=model.fit()plt.plot(history.history['loss'])plt.plot(history.history['val_loss'])plt.title("model loss")plt.ylabel("loss")plt.xlabel("epoch")plt.legend(["train",...
2018-04-04 21:01:40 23981 2
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人