神经网络量化(3)-量化算子

矩阵乘法:

矩阵加法:

 

clip:

 exemple:

 

 非线性算子:

1.查表 

2.线性模拟计算

在HLS中实现卷积神经网络(Convolutional Neural Network,CNN)算子,通常需要以下步骤: 1. 确定卷积层的输入和输出维度。这包括输入特征图的尺寸、卷积核的尺寸、步长和填充大小等。 2. 定义卷积操作。在HLS中,可以使用二维数组表示特征图和卷积核。通过遍历输入特征图和卷积核的元素,并进行乘法累加操作,可以实现卷积操作。 3. 添加偏置项。在卷积操作后,通常会将偏置项添加到每个卷积结果中。可以使用固定的偏置数组,或者通过配置参数传递偏置值。 4. 应用激活函数。在卷积结果上应用激活函数,如ReLU等。可以使用条件语句或函数来实现激活函数。 5. 重复上述步骤,直到完成所有卷积层的计算。 此外,还有一些优化技巧可以应用于HLS中的卷积神经网络实现: 1. 数据流设计:通过合理地划分数据流,可以提高并行度并减少存储器开销。 2. 缓存优化:使用缓存来存储中间结果,以减少存储器访问延迟。 3. 权值共享:对于具有相同权重的卷积核,可以共享权值以减少计算量。 4. 量化:对于卷积层的权重和激活值进行量化,可以减少资源占用和功耗。 最后,为了实现一个完整的CNN模型,您需要将各个卷积层、池化层和全连接层等组合在一起,并通过数据流和控制信号来协调它们的计算顺序。 请注意,这只是一个基本的概述,具体实现细节会因具体的CNN架构和HLS工具的使用而有所不同。如果您有特定的网络结构或需求,可以提供更多信息,以便我能够给出更具体的指导。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值