opencv学习(十)(opencv3.0.0+VS2012+win7)打开摄像头并且进行人脸识别的例子

#include "opencv2/objdetect.hpp"
#include "opencv2/highgui.hpp"
#include "opencv2/imgproc.hpp"
#include <iostream>
#include <stdio.h>
using namespace std;
using namespace cv;
void detectAndDraw( Mat& img, CascadeClassifier& cascade,CascadeClassifier& nestedCascade,double scale, bool tryflip );
string cascadeName  = "E:/SRT/opencv/opencv/sources/data/haarcascades/haarcascade_frontalface_alt.xml";
string nestedCascadeName= "E:/SRT/opencv/opencv/sources/data/haarcascades/haarcascade_eye_tree_eyeglasses.xml";
int main( int argc, const char** argv )
{
    Mat image;//视频流的图像或者图片
    bool tryflip = false;//首先不尝试翻转
    CascadeClassifier cascade, nestedCascade;//分类器
    double scale = 1;//规模=1
    if( !cascade.load( cascadeName ) )
    {
        cerr << "ERROR: Could not load classifier cascade" << endl;
        return -1;
    }
    if( argc ==1 )
    {
		VideoCapture cap(0);//在<opencv2/highgui/highgui.hpp>中,win7摄像头只能这样打开        
		if(!cap.isOpened())    
		{
			return -1;    
		}
		// 循环捕捉,直到用户按键跳出循环体  
		bool stop = false;    
		while(!stop)  
		{     
			cap>>image;  
			cvNamedWindow( "result", 1 );
			if( !image.empty() )
			{
				detectAndDraw( image, cascade, nestedCascade, scale, tryflip );
			}
			if(waitKey(30) >=0)
				stop = true;    
		}
    }
    else
    {
        image = imread( argv[1], 1 );
        cout << "In image read" << endl;
		cvNamedWindow( "result", 1 );
        if( !image.empty() )
        {
            detectAndDraw( image, cascade, nestedCascade, scale, tryflip );
            waitKey(0);
        }
    }
    cvDestroyWindow("result");
    return 0;
}

void detectAndDraw( Mat& img, CascadeClassifier& cascade,CascadeClassifier& nestedCascade,double scale, bool tryflip )
{
    int i = 0;
    double t = 0;
    vector<Rect> faces, faces2;//翻转前的脸face,翻转后的脸face2
    const static Scalar colors[] =  {CV_RGB(0,0,255),CV_RGB(0,128,255),CV_RGB(0,255,255),CV_RGB(0,255,0),
        CV_RGB(255,128,0),CV_RGB(255,255,0),CV_RGB(255,0,0),CV_RGB(255,0,255)} ;//用于标识人脸的圈圈的颜色
    Mat gray, smallImg( cvRound (img.rows/scale), cvRound(img.cols/scale), CV_8UC1 );//cvRound对一个double型的数进行四舍五入,并返回一个整型数
    cvtColor( img, gray, COLOR_BGR2GRAY );//变成灰度
    resize( gray, smallImg, smallImg.size(), 0, 0, INTER_LINEAR );//双线性插值(默认方法)
    equalizeHist( smallImg, smallImg );//使灰度图象直方图均衡化,增强图像的亮度及对比度

    t = (double)cvGetTickCount();//得到现在的时间
    cascade.detectMultiScale( smallImg, faces,
        1.1, 2, 0
        //|CASCADE_FIND_BIGGEST_OBJECT
        //|CASCADE_DO_ROUGH_SEARCH
        |CASCADE_SCALE_IMAGE
        ,
        Size(30, 30) );
    if( tryflip )
    {
        flip(smallImg, smallImg, 1);
        cascade.detectMultiScale( smallImg, faces2,
                                 1.1, 2, 0
                                 //|CASCADE_FIND_BIGGEST_OBJECT
                                 //|CASCADE_DO_ROUGH_SEARCH
                                 |CASCADE_SCALE_IMAGE
                                 ,
                                 Size(30, 30) );
        for( vector<Rect>::const_iterator r = faces2.begin(); r != faces2.end(); r++ )
        {
            faces.push_back(Rect(smallImg.cols - r->x - r->width, r->y, r->width, r->height));
        }
    }
    t = (double)cvGetTickCount() - t;//得出识别所用的时间
	printf( "detection time = %g ms\nthe number of faces = %d\n", t/((double)cvGetTickFrequency()*1000.) ,faces.size());
    for( vector<Rect>::const_iterator r = faces.begin(); r != faces.end(); r++, i++ )//画圈圈
    {
        Mat smallImgROI;
        vector<Rect> nestedObjects;
        Point center;
        Scalar color = colors[i%8];
        int radius;

        double aspect_ratio = (double)r->width/r->height;
        if( 0.75 < aspect_ratio && aspect_ratio < 1.3 )
        {
            center.x = cvRound((r->x + r->width*0.5)*scale);
            center.y = cvRound((r->y + r->height*0.5)*scale);
            radius = cvRound((r->width + r->height)*0.25*scale);
            circle( img, center, radius, color, 3, 8, 0 );
        }
        else
            rectangle( img, cvPoint(cvRound(r->x*scale), cvRound(r->y*scale)),
                       cvPoint(cvRound((r->x + r->width-1)*scale), cvRound((r->y + r->height-1)*scale)),
                       color, 3, 8, 0);
        if( nestedCascade.empty() )
            continue;
        smallImgROI = smallImg(*r);
        nestedCascade.detectMultiScale( smallImgROI, nestedObjects,
            1.1, 2, 0
            //|CASCADE_FIND_BIGGEST_OBJECT
            //|CASCADE_DO_ROUGH_SEARCH
            //|CASCADE_DO_CANNY_PRUNING
            |CASCADE_SCALE_IMAGE
            ,
            Size(30, 30) );
        for( vector<Rect>::const_iterator nr = nestedObjects.begin(); nr != nestedObjects.end(); nr++ )
        {
            center.x = cvRound((r->x + nr->x + nr->width*0.5)*scale);
            center.y = cvRound((r->y + nr->y + nr->height*0.5)*scale);
            radius = cvRound((nr->width + nr->height)*0.25*scale);
            circle( img, center, radius, color, 3, 8, 0 );
        }
    }
    cv::imshow( "result", img );
}
脸侧着的时候无法识别,而且不能改变分类器,凑合着能用。
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值