为什么Byte是从-128到127?

本文深入探讨了Byte数据类型的表示范围,从计算机二进制的基本原理出发,解析了Byte为何能表示从-128到127的数值。通过介绍原码、反码和补码的概念,解释了补码是如何解决负数表示问题,并最终形成闭合的数值范围。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

原文链接:(11条消息) 为什么Byte是从-128到127?_strongerHuang的博客-CSDN博客

笔者在搜索相关问题时发现了上述帖子,但可惜原帖似有遗漏,故补充说明。

  计算机是一个很神奇的东西,仅靠 0 和 1 就能运算、存储等操作。那么,为什么Byte是从是从-128到127?

今天就给大家讲讲计算机二进制的一些内容。

1

计算机表示数据的规则

这个问题的解释要从符号位说起,在计算机的世界里,数字的表示采用的是二进制的规则,如果自然界只存在正数,那么计算机的编码方式将无比简单,直接就能使用二进制来表示。比如十进制的8,直接就用1000表示就可以。

但是自然界还存在负数,在现实社会中我们使用正号和负号来表示,但是对于计算机来说,要添加正号和负号不是那么容易的事情,会带来电路复杂度成倍的上升。

于是,所谓的符号位出现了,采用最高位来表示符号位,0为正数,1为负数。我觉得本质上符号位就是为了解决计算机如何表示负数而出现的。

嵌入式专栏

2

原码、反码、补码

有了正数和负数,下面说说运算的问题,根据冯诺依曼计算机体系得知,一台计算机由运算器,控制器,存储器,输入输出设备组成,其中运算器只有加法运算器(其他的运算全部转换成加法运算来完成),所以呢,计算机世界的减法只能用加法表示。

比如:4-2 只能用4+(-2)运算。

1.原码

-2怎么表示?最直观的表示方法表示为1010,最高位是符号位。这样的表示方式,我们称为原码表示法。然后我们就愉快的开始了运算。

 
  1. 4-2=0100+1010=1110=-6

  2. 2-2=0010+1010=1100=-4

很明显结果是不对的,所以不能用原码来表示负数。但是主要的问题是因为两个相反数相加不等于0导致其他运算的结果错误。

假设解决了相反数相加等于0:4-2=2+2-2=2,那么其他的运算也是可以得到正确结果的。

2.反码

为了解决这个问题,我们引入了反码。

负数是一个正数的相反数,所以我们将一个正数全部按位取反来表示一个负数,这种表示负数的方式就是反码。

比如:

2是0010,那么-2就是1101,然后我们再来开始愉快的运算之路。

4-2=0100+1101=0001(反码)=0001=1
2-2=0010+1101=1111(反码)=1000=-0
-4-2=1011+1101=1000(反码)=1111=-7
-1-2=1110+1101=1011(反码)=1100=-4

实验发现除了两个相反数相加稍微接近我们所熟知的结果,其他的结果简直不忍直视,所以用反码来表示负数也是不靠谱的。

实际上,反码是可以用来做运算的。我们发现当符号位存在进位的时候,此时你的运算的结果可能跟你的预期是有差距的,但是是可以通过修正结算过程来达到期望的结果的。修正的方法就是如果符号位有进位的情况下,将进位加到结果的最后一位就可以对结果达成修正。

比如:

4-2=0100+1101=0001+1=0010=2 结果正确

-4-2=1011+1101=1000(反码)+1=1001(反码)=1110=-6 结果正确

-1-2=1110+1101=1011(反码)+1=1100(反码)=1011=-3 结果正确

这说明反码是可以用来进行减法计算的,但是需要付出额外的代价,并且没有解决+0和-0的问题。

3.补码

怎么来解决负数的表示问题呢?伟大的科学家们观察自然界的运行规律,总结出了两个很牛逼的概念,一个叫"模",一个叫"补数"。

嵌入式专栏

3

官方术语:

“模”是指一个计量系统的计数范围,如时钟、日历等.计算机也可以看成一个计量机器,它也有一个计量范围。只要有一个计量范围,即都存在一个“模”。

“模”实质上是计量器产生“溢出”的量,它的值在计量器上表示不出来,计量器上只能表示出模的余数。

比如:十二小时制的时钟采用的是十二进制来表示时间,一到了12点,再向后就又从1开始了,所以12是时钟系统的模。12是一个范围,超过了十二一切从头来过。

好多文章都说时钟系统的计量范围是0到11,但是没有解释为什么,我这边猜测是因为时钟采用的是12进制,如果不发生进位的话,那它就只能表示0到11这12个数。这跟我们的现实生活是对应得上的,我们一般讲的12点其实是0点,所以12本来是在时钟表示不出来的值,是一个溢出的量,但是为了方便人们的理解,才有了十二点的表示方式。

嵌入式专栏

4

补数

民间解释:

当M是系统的模的时候,如果|A|+|B|=M,我们就说A的补数是B,这个概念跟补角的概念类似,如果两个角相加为180°,那么称两个角互补。(实际上补数还有一些别的解释,但是目前我觉得这种解释比较合理)。

说清楚了模和补码,然后最重要的一个发现来了,在有模的系统中,减去一个数等于加上它的补数.还是以时钟为例:如果我们把顺时针看成正,把逆时针看成负,现在是2点,如果想要变成1点,可以逆时针转一格,也可以顺时针转11格,写成数学式子就是 2-1=2+11.

嵌入式专栏

5

为什么?

除了补数可以解释,还有说法是一个有模的系统里,如果发生数的溢出,那么溢出的这个数表示的数就是对M求模的结果(因为我们知道时钟的取值范围是0-11,超过了11,将又从0开始)。

2+11=1+12=1或者2+11=13 mod 12=1将时钟迁移到计算机系统:比如一个4位的二进制,最多可以表示2^4=16个数,最大的数是1111=15,超过1111就会发生进位的情况,变成10000,因为只有四位,所以表示的是0000=0,然后再加一,变成0001=1,开始了循环,那么模的值就是16这个溢出的值。

有了上面的基础,我们很轻松的就可以将减法直接变成加法来计算。

对于byte来说就是七位,七位正数最大的就是1111111 转换成十进制就是127,从 2的0次方加到2的6次方。

热知识

在计算机中,数字都是以二进制补码的方式进行存储和运算

故在byte中,正数可以表示为从0000 0000->01111 1111这是其补码,但因为是正数所以原反补相同,因此其正数范围为0到127.

而负数范围则是从1111 1111->1000 0000,这是其补码,但输出时要以原码或十进制形式输出

补码1111 1111

反码为补码减一即1111 1110

补码为源码取反,反之亦然 即1000 0001

得到 -1.

补码1000 0000

反码为补码减一,故 0111 1111。

到这里便出问题了,显然我们用符号位做了运算,显然错误。

而后我们跳出全局想一下这个问题,8位字节,去除符号位后只剩七位,七位数无法表示出+-128,所以理论上负数极值应为1111 1111->1000 0001,即-1到-127,1000 0000直接看的话就是-0,所以只能是-0被规定为-128。这是个很巧妙也很必须的设定,只有这样才能满足256位,才能解释为什么byte所占字节为-128-127。

然后来解决这个-128为什么可以用1000 0000表示。
   众所周知byte只有8位。在无符号位的二进制中128的表示为1000 0000。有符号位的情况下byte无法表示+128或-128。
   但倘若我们假设现在byte不是占用8位,而是9位,最高位是符号位。那么-128就能够是1 1000 0000,其补码也是1 1000 0000,二者相同。-128的补码尾八位就是1000 0000。那就规定【1000 0000是-128的补码,且-128是没有原码和反码的,即不能利用1000 0000反推其原码和反码】。

其实这么设计的巧妙之处在于:
    1.对于如果大于8位的有符号整数数据类型,-128的补码尾八位刚好是1000 0000。
    2.比如127(0111 1111)加1(0000 0001)刚好得到-128(1000 0000),-128(1000 0000)加1(0000 00001)等于-127(1000 0001)这样从-128~127的反码首尾相连,形成了一个闭环,就像时钟一样。   
    3.上文也提到过,在计算机中减法运算可以转换成加法运算,比如8-1——>8+(-1)——>补码运算:(0000 1000) + (1111 1111) = (0000 0111) 刚好是7。-128+127——>(1000 0000) + (0111 1111) = (1111 1111)刚好是-1,-128的补码完美的适用于减法。

由byte范围同理可得:

评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值