NLOS误差---基于信道特征的NLOS识别算法详解

原理:利用一组UWB信号的采样数据的陡峭程度能够反应该信道是否为LOS环境,如果信道的冲激响应具有较低的峭度,该信道很可能受NLOS误差影响。

数学模型如下:

通俗而讲:峭度高的数据集趋向于在均值附近有一个明显的峰值,下降较快,尾部较重,而峰度低的数据集趋向于在均值附近有一个平坦的顶部,而不是一个陡峭的峰值”。由于峰度表征的是样本数据的峰度,因此它也可用来表征某一信道的视距强弱。这意味着对于峰度值较高的CIR,接收到的信号更有可能是LOS

因此利用PDF函数去处理数据可以得到其分布情况。(通常使用IEEE 802.15.4a工作组提供的数据

看过不少论文的仿真图把CM1和CM2搞反了,我猜他们肯定原理都没搞懂,从上图可以看到数据的方差越大PDF函数越平缓,则该信道更可能是LOS环境下的信道,反之受NLOS影响的信道。峭度高的数据在均值附近有一个明显的峰值,下降快(数据方差大);峭度低的数据在均值附近有一个平坦的顶部,而不是一个陡峭的峰值(数据方差小)。这意味着对于峰度值较高的CIR,接收到的信号更有可能是LOS环境下的。

最后对比实测情况下与LOS情况下的峭度即可判定。

 

 

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

AdamFriedrich

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值