BASNet代码运行出现的问题

BASNet代码运行出现的问题


代码直接在 github下载
主要对basnet_train.py进行修改

import torch
import torchvision
from torch.autograd import Variable
import torch.nn as nn
import torch.nn.functional as F

from torch.utils.data import Dataset, DataLoader
from torchvision import transforms, utils
import torch.optim as optim
import torchvision.transforms as standard_transforms

import numpy as np
import glob

from data_loader import Rescale
from data_loader import RescaleT
from data_loader import RandomCrop
from data_loader import CenterCrop
from data_loader import ToTensor
from data_loader import ToTensorLab
from data_loader import SalObjDataset

from model import BASNet

import pytorch_ssim
import pytorch_iou
import os

# ------- 1. define loss function --------

bce_loss = nn.BCELoss(size_average=True)
ssim_loss = pytorch_ssim.SSIM(window_size=11, size_average=True)
iou_loss = pytorch_iou.IOU(size_average=True)


def bce_ssim_loss(pred, target):
    bce_out = bce_loss(pred, target)
    ssim_out = 1 - ssim_loss(pred, target)
    iou_out = iou_loss(pred, target)

    loss = bce_out + ssim_out + iou_out

    return loss


def muti_bce_loss_fusion(d0, d1, d2, d3, d4, d5, d6, d7, labels_v):
    loss0 = bce_ssim_loss(d0, labels_v)
    loss1 = bce_ssim_loss(d1, labels_v)
    loss2 = bce_ssim_loss(d2, labels_v)
    loss3 = bce_ssim_loss(d3, labels_v)
    loss4 = bce_ssim_loss(d4, labels_v)
    loss5 = bce_ssim_loss(d5, labels_v)
    loss6 = bce_ssim_loss(d6, labels_v)
    loss7 = bce_ssim_loss(d7, labels_v)
    # ssim0 = 1 - ssim_loss(d0,labels_v)

    # iou0 = iou_loss(d0,labels_v)
    # loss = torch.pow(torch.mean(torch.abs(labels_v-d0)),2)*(5.0*loss0 + loss1 + loss2 + loss3 + loss4 + loss5) #+ 5.0*lossa
    loss = loss0 + loss1 + loss2 + loss3 + loss4 + loss5 + loss6 + loss7  # + 5.0*lossa
    print("l0: %3f, l1: %3f, l2: %3f, l3: %3f, l4: %3f, l5: %3f, l6: %3f\n" %
          (loss0.item(), loss1.item(), loss2.item(), loss3.item(), loss4.item(), loss5.item(), loss6.item()))
    # print("BCE: l1:%3f, l2:%3f, l3:%3f, l4:%3f, l5:%3f, la:%3f, all:%3f\n"%(loss1.data[0],loss2.data[0],loss3.data[0],loss4.data[0],loss5.data[0],lossa.data[0],loss.data[0]))

    return loss0, loss

if __name__ == '__main__':
    # ------- 2. set the directory of training dataset --------

    data_dir = './train_data/'
    tra_image_dir = 'DUTS/DUTS-TR/DUTS-TR/im_aug/'
    tra_label_dir = 'DUTS/DUTS-TR/DUTS-TR/gt_aug/'

    image_ext = '.jpg'
    label_ext = '.png'

    model_dir = "./saved_models/basnet_bsi/"

    epoch_num = 120
    batch_size_train = 4
    batch_size_val = 1
    train_num = 0
    val_num = 0

    tra_img_name_list = glob.glob(data_dir + tra_image_dir + '*' + image_ext)

    tra_lbl_name_list = []
    for img_path in tra_img_name_list:
        img_name = img_path.split(os.sep)[-1]

        aaa = img_name.split(".")
        bbb = aaa[0:-1]
        imidx = bbb[0]
        for i in range(1, len(bbb)):
            imidx = imidx + "." + bbb[i]
        tra_lbl_name_list.append(data_dir + tra_label_dir + imidx + label_ext)

    print("---")
    print("train images: ", len(tra_img_name_list))
    print("train labels: ", len(tra_lbl_name_list))
    print("---")

    train_num = len(tra_img_name_list)

    salobj_dataset = SalObjDataset(
        img_name_list=tra_img_name_list,
        lbl_name_list=tra_lbl_name_list,
        transform=transforms.Compose([
            RescaleT(256),
            RandomCrop(224),
            ToTensorLab(flag=0)]))
    salobj_dataloader = DataLoader(salobj_dataset, batch_size=batch_size_train, shuffle=True, num_workers=1)

    # ------- 3. define model --------
    # define the net
    net = BASNet(3, 1)
    if torch.cuda.is_available():
        net.cuda()

    # ------- 4. define optimizer --------
    print("---define optimizer...")
    optimizer = optim.Adam(net.parameters(), lr=0.001, betas=(0.9, 0.999), eps=1e-08, weight_decay=0)

    # ------- 5. training process --------
    print("---start training...")
    ite_num = 0
    running_loss = 0.0
    running_tar_loss = 0.0
    ite_num4val = 0

    for epoch in range(0, epoch_num):
        net.train()

        for i, data in enumerate(salobj_dataloader):
            ite_num = ite_num + 1
            ite_num4val = ite_num4val + 1

            inputs, labels = data['image'], data['label']

            inputs = inputs.type(torch.FloatTensor)
            labels = labels.type(torch.FloatTensor)

            # wrap them in Variable
            if torch.cuda.is_available():
                inputs_v, labels_v = Variable(inputs.cuda(), requires_grad=False), Variable(labels.cuda(),
                                                                                            requires_grad=False)
            else:
                inputs_v, labels_v = Variable(inputs, requires_grad=False), Variable(labels, requires_grad=False)

            # y zero the parameter gradients
            optimizer.zero_grad()

            # forward + backward + optimize
            d0, d1, d2, d3, d4, d5, d6, d7 = net(inputs_v)
            loss2, loss = muti_bce_loss_fusion(d0, d1, d2, d3, d4, d5, d6, d7, labels_v)

            loss.backward()
            optimizer.step()

            # # print statistics
            running_loss += loss.item()
            running_tar_loss += loss2.item()

            # del temporary outputs and loss
            del d0, d1, d2, d3, d4, d5, d6, d7, loss2, loss

            print("[epoch: %3d/%3d, batch: %5d/%5d, ite: %d] train loss: %3f, tar: %3f " % (
                epoch + 1, epoch_num, (i + 1) * batch_size_train, train_num, ite_num, running_loss / ite_num4val,
                running_tar_loss / ite_num4val))

            if ite_num % 2000 == 0:  # save model every 2000 iterations

                torch.save(net.state_dict(), model_dir + "basnet_bsi_itr_%d_train_%3f_tar_%3f.pth" % (
                    ite_num, running_loss / ite_num4val, running_tar_loss / ite_num4val))
                running_loss = 0.0
                running_tar_loss = 0.0
                net.train()  # resume train
                ite_num4val = 0

    print('-------------Congratulations! Training Done!!!-------------')

主要改动是加添
if __name__ == '__main__':

将60行和160行的.data[0]改为item()访问张量

loss1.data[0],loss2.data[0],loss3.data[0],loss4.data[0],loss5.data[0],lossa.data[0],loss.data[0]))
 
running_loss += loss.data[0]
running_tar_loss += loss2.data[0]

运行后发现label读不出来
将88行修改为

img_name = img_path.split(os.sep)[-1]

这样就可以运行了,测试不需要修改,注意路径就行了
在这里插入图片描述

评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值