支持向量机(svm)

支持向量机(SVM)

支持向量机(Support Vector Machine, SVM)是一种常用的机器学习算法,用于二分类和多分类问题。SVM的核心思想是寻找一个最优的超平面,使得不同类别的样本之间的间隔最大化。
超平面是一个n-1维的子空间,其中n是特征的维度。对于二分类问题,超平面可以表示为:
w ⋅ x + b = 0 w \cdot x+b=0 wx+b=0
其中, w w w 是法向量(垂直于超平面的向量), x x x 是输入样本的特征向量, b b b 是偏置项。
为了找到最优的超平面,SVM的目标是最大化样本点到超平面的最小间隔,即最大化间隔。间隔表示样本点到超平面的距离,这个距离可以用函数间隔和几何间隔来表示。函数间隔定义为:
γ ^ i = y i ( w ⋅ x i + b ) \hat{\gamma}_i=y_i\left(w \cdot x_i+b\right) γ^i=yi(wxi+b)
其中, y i y_i yi 是样本点 x i x_i xi 的标签(+1 或 -1)。几何间隔表示在特征空间中,样本点到超平面的距离,可以用法向量的模长来表示:
γ i = γ ^ i ∥ w ∥ \gamma_i=\frac{\hat{\gamma}_i}{\|w\|} γi=wγ^i
为了找到最大间隔的超平面,SVM的优化目标是:
max ⁡ w , b 1 ∥ w ∥ min ⁡ i = 1 n ( γ ^ i ) \max _{w, b} \frac{1}{\|w\|} \min _{i=1}^n\left(\hat{\gamma}_i\right) w,bmaxw1i=1minn(γ^i)
为了方便计算,需要引入拉格朗日乘子 α i \alpha_i αi,并转化为对偶问题:
min ⁡ α 1 2 ∑ i = 1 n ∑ j = 1 n α i α j y i y j x i ⋅ x j − ∑ i = 1 n α i \min _\alpha \frac{1}{2} \sum_{i=1}^n \sum_{j=1}^n \alpha_i \alpha_j y_i y_j x_i \cdot x_j-\sum_{i=1}^n \alpha_i αmin21i=1nj=1nαiαjyiyjxixji=1nαi
其中, α i ≥ 0 \alpha_i \geq 0 αi0 是拉格朗日乘子, x i x_i xi y i y_i yi 是训练数据集的样本点和对应的标签。

通过求解上述的对偶问题,可以得到一系列的 α i \alpha_i αi。然后,通过支持向量的定义,就可以找到支持向量对应的样本点和标签。最终,得到了法向量 w w w 和偏置项 b b b,从而得到最优的超平面。

对于非线性分类问题,SVM引入核函数的概念。核函数可以将样本点从原始的特征空间映射到更高维的特征空间,从而实现在高维空间中找到线性可分的超平面。常用的核函数有线性核函数、多项式核函数、高斯径向基核函数等。

SMO算法(简化版)

SMO(Sequential Minimal Optimization)算法是用于求解支持向量机(SVM)的优化算法。
相比于完整的SMO算法,简化版的SMO算法只考虑了部分优化步骤,简化版的SMO算法主要针对线性可分的SVM问题,
算法的主要步骤:

将输入的数据集和类别标签转化为矩阵。
初始化参数 b(偏置项)和拉格朗日乘子 alphas 为全零。
获取数据集的行数和列数,分别为 m 和 n。
进入主要的迭代循环,直到达到最大迭代次数或者没有任何 alpha 对进行优化为止。
在每次循环中,遍历所有样本点,并对每个样本点进行检查和优化。
对于当前的第一个样本点 alpha_i,计算其预测值和误差(函数间隔和几何间隔)。
如果当前样本点可以进行优化,则选择另一个样本点 alpha_j 进行优化。
通过一系列的条件判断,保证拉格朗日乘子 alphas 在约束条件 0 到 C 之间。
在满足优化条件的情况下,通过解析方式更新拉格朗日乘子 alphas 和偏置项 b。
判断是否有改进的 alpha 对,如果有,则重置迭代次数,否则增加迭代次数。
继续下一轮循环。
当达到最大循环次数或者没有任何 alpha 对进行优化时,算法终止。
代码如下:


from time import sleep
import matplotlib.pyplot as plt
import numpy as np
import random
import types

"""
函数说明:读取数据

Parameters:
    fileName - 文件名
Returns:
    dataMat - 数据矩阵
    labelMat - 数据标签
"""
def loadDataSet(fileName):
    dataMat = []; labelMat = []
    fr = open(fileName)
    for line in fr.readlines():                                     #逐行读取,滤除空格等
        lineArr = line.strip().split('\t')
        dataMat.append([float(lineArr[0]), float(lineArr[1])])      #添加数据
        labelMat.append(float(lineArr[2]))                          #添加标签
    return dataMat,labelMat


"""
函数说明:随机选择alpha

Parameters:
    i - alpha
    m - alpha参数个数
Returns:
    j -
"""
def selectJrand(i, m):
    j = i                                 #选择一个不等于i的j
    while (j == i):
        j = int(random.uniform(0, m))
    return j

"""
函数说明:修剪alpha

Parameters:
    aj - alpha值
    H - alpha上限
    L - alpha下限
Returns:
    aj - alpah值
"""
def clipAlpha(aj,H,L):
    if aj > H:
        aj = H
    if L > aj:
        aj = L
    return aj

"""
函数说明:简化版SMO算法

Parameters:
    dataMatIn - 数据矩阵
    classLabels - 数据标签
    C - 松弛变量
    toler - 容错率
    maxIter - 最大迭代次数
Returns:
    无
"""
def smoSimple(dataMatIn, classLabels, C, toler, maxIter):
    #转换为numpy的mat存储
    dataMatrix = np.mat(dataMatIn); labelMat = np.mat(classLabels).transpose()
    #初始化b参数,统计dataMatrix的维度
    b = 0; m,n = np.shape(dataMatrix)
    #初始化alpha参数,设为0
    alphas = np.mat(np.zeros((m,1)))
    #初始化迭代次数
    iter_num = 0
    #最多迭代matIter次
    while (iter_num < maxIter):
        alphaPairsChanged = 0
        for i in range(m):
            #步骤1:计算误差Ei
            fXi = float(np.multiply(alphas,labelMat).T*(dataMatrix*dataMatrix[i,:].T)) + b
            Ei = fXi - float(labelMat[i])
            #优化alpha,更设定一定的容错率。
            if ((labelMat[i]*Ei < -toler) and (alphas[i] < C)) or ((labelMat[i]*Ei > toler) and (alphas[i] > 0)):
                #随机选择另一个与alpha_i成对优化的alpha_j
                j = selectJrand(i,m)
                #步骤1:计算误差Ej
                fXj = float(np.multiply(alphas,labelMat).T*(dataMatrix*dataMatrix[j,:].T)) + b
                Ej = fXj - float(labelMat[j])
                #保存更新前的aplpha值,使用深拷贝
                alphaIold = alphas[i].copy(); alphaJold = alphas[j].copy();
                #步骤2:计算上下界L和H
                if (labelMat[i] != labelMat[j]):
                    L = max(0, alphas[j] - alphas[i])
                    H = min(C, C + alphas[j] - alphas[i])
                else:
                    L = max(0, alphas[j] + alphas[i] - C)
                    H = min(C, alphas[j] + alphas[i])
                if L==H: print("L==H"); continue
                #步骤3:计算eta
                eta = 2.0 * dataMatrix[i,:]*dataMatrix[j,:].T - dataMatrix[i,:]*dataMatrix[i,:].T - dataMatrix[j,:]*dataMatrix[j,:].T
                if eta >= 0: print("eta>=0"); continue
                #步骤4:更新alpha_j
                alphas[j] -= labelMat[j]*(Ei - Ej)/eta
                #步骤5:修剪alpha_j
                alphas[j] = clipAlpha(alphas[j],H,L)
                if (abs(alphas[j] - alphaJold) < 0.00001): print("alpha_j变化太小"); continue
                #步骤6:更新alpha_i
                alphas[i] += labelMat[j]*labelMat[i]*(alphaJold - alphas[j])
                #步骤7:更新b_1和b_2
                b1 = b - Ei- labelMat[i]*(alphas[i]-alphaIold)*dataMatrix[i,:]*dataMatrix[i,:].T - labelMat[j]*(alphas[j]-alphaJold)*dataMatrix[i,:]*dataMatrix[j,:].T
                b2 = b - Ej- labelMat[i]*(alphas[i]-alphaIold)*dataMatrix[i,:]*dataMatrix[j,:].T - labelMat[j]*(alphas[j]-alphaJold)*dataMatrix[j,:]*dataMatrix[j,:].T
                #步骤8:根据b_1和b_2更新b
                if (0 < alphas[i]) and (C > alphas[i]): b = b1
                elif (0 < alphas[j]) and (C > alphas[j]): b = b2
                else: b = (b1 + b2)/2.0
                #统计优化次数
                alphaPairsChanged += 1
                #打印统计信息
                print("第%d次迭代 样本:%d, alpha优化次数:%d" % (iter_num,i,alphaPairsChanged))
        #更新迭代次数
        if (alphaPairsChanged == 0): iter_num += 1
        else: iter_num = 0
        print("迭代次数: %d" % iter_num)
    return b,alphas

"""
函数说明:分类结果可视化

Parameters:
    dataMat - 数据矩阵
    w - 直线法向量
    b - 直线解决
Returns:
    无
"""
def showClassifer(dataMat, w, b):
    #绘制样本点
    data_plus = []                                  #正样本
    data_minus = []                                 #负样本
    for i in range(len(dataMat)):
        if labelMat[i] > 0:
            data_plus.append(dataMat[i])
        else:
            data_minus.append(dataMat[i])
    data_plus_np = np.array(data_plus)              #转换为numpy矩阵
    data_minus_np = np.array(data_minus)            #转换为numpy矩阵
    plt.scatter(np.transpose(data_plus_np)[0], np.transpose(data_plus_np)[1], s=30, alpha=0.7)   #正样本散点图
    plt.scatter(np.transpose(data_minus_np)[0], np.transpose(data_minus_np)[1], s=30, alpha=0.7) #负样本散点图
    #绘制直线
    x1 = max(dataMat)[0]
    x2 = min(dataMat)[0]
    a1, a2 = w
    b = float(b)
    a1 = float(a1[0])
    a2 = float(a2[0])
    y1, y2 = (-b- a1*x1)/a2, (-b - a1*x2)/a2
    plt.plot([x1, x2], [y1, y2])
    #找出支持向量点
    for i, alpha in enumerate(alphas):
        if abs(alpha) > 0:
            x, y = dataMat[i]
            plt.scatter([x], [y], s=150, c='none', alpha=0.7, linewidth=1.5, edgecolor='red')
    plt.show()


"""
函数说明:计算w

Parameters:
    dataMat - 数据矩阵
    labelMat - 数据标签
    alphas - alphas值
Returns:
    无
"""
def get_w(dataMat, labelMat, alphas):
    alphas, dataMat, labelMat = np.array(alphas), np.array(dataMat), np.array(labelMat)
    w = np.dot((np.tile(labelMat.reshape(1, -1).T, (1, 2)) * dataMat).T, alphas)
    return w.tolist()


if __name__ == '__main__':
    dataMat, labelMat = loadDataSet('testSet.txt')
    b,alphas = smoSimple(dataMat, labelMat, 0.6, 0.001, 40)
    w = get_w(dataMat, labelMat, alphas)
    showClassifer(dataMat, w, b)

结果如下:
在这里插入图片描述

在复杂数据上应用核函数

核函数的目的是将数据从原始的低维空间映射到高维空间中。通过使用核函数,可以将线性不可分问题转化为线性可分问题,从而可以使用线性模型进行处理。
对于分类器而言,它只能识别分类器的结果是大于0还是小于0。如果只在x和y轴构成的坐标系中插入直线进行分类的话,我们并不会得到理想的结果。但是可以对数据进行某种形式的转换,从而得到某些新的变量来表示数据。在这种表示情况下,我们就更容易得到大于0或者小于0的测试结果。在通常情况下,这种映射是通过 核函数 来实现的,会将低维特征空间映射到高维空间请添加图片描述

高斯核函数

K ( x , z ) = e − ∥ x − z ∥ 2 2 σ 2 K(x, z)=e^{-\frac{\|x-z\|^2}{2 \sigma^2}} K(x,z)=e2σ2xz2
高斯核也称为径向基(RBF)核函数,其中 σ需要自己调参定义, 小的σ对应更高维的空间。
根据公式,编写核函数,并增加初始化参数kTup用于存储核函数有关的信息,同时只要将之前的内积运算变成核函数的运算即可。最后编写testRbf()函数,用于测试。

import matplotlib.pyplot as plt
import numpy as np
import random

"""
Parameters:
    dataMatIn - 数据矩阵
    classLabels - 数据标签
    C - 松弛变量
    toler - 容错率
    kTup - 包含核函数信息的元组,第一个参数存放核函数类别,第二个参数存放必要的核函数需要用到的参数
"""
# 数据结构,维护所有需要操作的值
class optStruct:
    def __init__(self, dataMatIn, classLabels, C, toler, kTup):
        self.X = dataMatIn#数据矩阵
        self.labelMat = classLabels#数据标签
        self.C = C#松弛变量
        self.tol = toler#容错率
        self.m = np.shape(dataMatIn)[0]#数据矩阵行数
        self.alphas = np.mat(np.zeros((self.m,1)))#根据矩阵行数初始化alpha参数为0   
        self.b = 0#初始化b参数为0
        #根据矩阵行数初始化虎误差缓存,第一列为是否有效的标志位,第二列为实际的误差E的值。
        self.eCache = np.mat(np.zeros((self.m,2)))
        self.K = np.mat(np.zeros((self.m,self.m)))#初始化核K
        for i in range(self.m):#计算所有数据的核K
            self.K[:,i] = kernelTrans(self.X, self.X[i,:], kTup)

"""
Parameters:
    X - 数据矩阵
    A - 单个数据的向量
    kTup - 包含核函数信息的元组
Returns:
    K - 计算的核K
"""
# 通过核函数将数据转换更高维的空间
def kernelTrans(X, A, kTup):
    m,n = np.shape(X)
    K = np.mat(np.zeros((m,1)))
    if kTup[0] == 'lin': K = X * A.T#线性核函数,只进行内积。
    elif kTup[0] == 'rbf':#高斯核函数,根据高斯核函数公式进行计算
        for j in range(m):
            deltaRow = X[j,:] - A
            K[j] = deltaRow*deltaRow.T
        K = np.exp(K/(-1*kTup[1]**2))#计算高斯核K
    else: raise NameError('核函数无法识别')
    return K#返回计算的核K

"""
Parameters:
    fileName - 文件名
Returns:
    dataMat - 数据矩阵
    labelMat - 数据标签
"""
# 读取数据
def loadDataSet(fileName):
    dataMat = []; labelMat = []
    fr = open(fileName)
    for line in fr.readlines():#逐行读取,滤除空格等
        lineArr = line.strip().split('\t')
        dataMat.append([float(lineArr[0]), float(lineArr[1])])#添加数据
        labelMat.append(float(lineArr[2]))#添加标签
    return dataMat,labelMat

"""
Parameters:
    oS - 数据结构
    k - 标号为k的数据
Returns:
    Ek - 标号为k的数据误差
"""
# 计算误差
def calcEk(oS, k):
    fXk = float(np.multiply(oS.alphas,oS.labelMat).T*oS.K[:,k] + oS.b)
    Ek = fXk - float(oS.labelMat[k])
    return Ek

"""
Parameters:
    i - alpha_i的索引值
    m - alpha参数个数
Returns:
    j - alpha_j的索引值
"""
# 函数说明:随机选择alpha_j的索引值
def selectJrand(i, m):
    j = i#选择一个不等于i的j
    while (j == i):
        j = int(random.uniform(0, m))
    return j

"""
Parameters:
    i - 标号为i的数据的索引值
    oS - 数据结构
    Ei - 标号为i的数据误差
Returns:
    j, maxK - 标号为j或maxK的数据的索引值
    Ej - 标号为j的数据误差
"""
# 内循环启发方式2
def selectJ(i, oS, Ei):
    maxK = -1; maxDeltaE = 0; Ej = 0#初始化
    oS.eCache[i] = [1,Ei]#根据Ei更新误差缓存
    validEcacheList = np.nonzero(oS.eCache[:,0].A)[0]#返回误差不为0的数据的索引值
    if (len(validEcacheList)) > 1:#有不为0的误差
        for k in validEcacheList:#遍历,找到最大的Ek
            if k == i: continue#不计算i,浪费时间
            Ek = calcEk(oS, k)#计算Ek
            deltaE = abs(Ei - Ek)#计算|Ei-Ek|
            if (deltaE > maxDeltaE):#找到maxDeltaE
                maxK = k; maxDeltaE = deltaE; Ej = Ek
        return maxK, Ej#返回maxK,Ej
    else:#没有不为0的误差
        j = selectJrand(i, oS.m)#随机选择alpha_j的索引值
        Ej = calcEk(oS, j)#计算Ej
    return j, Ej#j,Ej

"""
Parameters:
    oS - 数据结构
    k - 标号为k的数据的索引值
Returns:
    无
"""
# 计算Ek,并更新误差缓存
def updateEk(oS, k):
    Ek = calcEk(oS, k)#计算Ek
    oS.eCache[k] = [1,Ek]#更新误差缓存

"""
Parameters:
    aj - alpha_j的值
    H - alpha上限
    L - alpha下限
Returns:
    aj - 修剪后的alpah_j的值
"""
# 修剪alpha_j
def clipAlpha(aj,H,L):
    if aj > H:
        aj = H
    if L > aj:
        aj = L
    return aj

"""
Parameters:
    i - 标号为i的数据的索引值
    oS - 数据结构
Returns:
    1 - 有任意一对alpha值发生变化
    0 - 没有任意一对alpha值发生变化或变化太小
"""
# 优化的SMO算法
def innerL(i, oS):
    #步骤1:计算误差Ei
    Ei = calcEk(oS, i)
    #优化alpha,设定一定的容错率。
    if ((oS.labelMat[i] * Ei < -oS.tol) and (oS.alphas[i] < oS.C)) or\
     ((oS.labelMat[i] * Ei > oS.tol) and (oS.alphas[i] > 0)):
        #使用内循环启发方式2选择alpha_j,并计算Ej
        j,Ej = selectJ(i, oS, Ei)
        #保存更新前的aplpha值,使用深拷贝
        alphaIold = oS.alphas[i].copy(); alphaJold = oS.alphas[j].copy();
        #步骤2:计算上下界L和H
        if (oS.labelMat[i] != oS.labelMat[j]):
            L = max(0, oS.alphas[j] - oS.alphas[i])
            H = min(oS.C, oS.C + oS.alphas[j] - oS.alphas[i])
        else:
            L = max(0, oS.alphas[j] + oS.alphas[i] - oS.C)
            H = min(oS.C, oS.alphas[j] + oS.alphas[i])
        if L == H:
            print("L==H")
            return 0
        #步骤3:计算eta
        eta = 2.0 * oS.K[i,j] - oS.K[i,i] - oS.K[j,j]
        if eta >= 0:
            print("eta>=0")
            return 0
        #步骤4:更新alpha_j
        oS.alphas[j] -= oS.labelMat[j] * (Ei - Ej)/eta
        #步骤5:修剪alpha_j
        oS.alphas[j] = clipAlpha(oS.alphas[j],H,L)
        #更新Ej至误差缓存
        updateEk(oS, j)
        if (abs(oS.alphas[j] - alphaJold) < 0.00001):
            print("alpha_j变化太小")
            return 0
        #步骤6:更新alpha_i
        oS.alphas[i] += oS.labelMat[j]*oS.labelMat[i]*(alphaJold - oS.alphas[j])
        #更新Ei至误差缓存
        updateEk(oS, i)
        #步骤7:更新b_1和b_2
        b1 = oS.b - Ei- oS.labelMat[i]*(oS.alphas[i]-alphaIold)*oS.K[i,i] - oS.labelMat[j]*(oS.alphas[j]-alphaJold)*oS.K[i,j]
        b2 = oS.b - Ej- oS.labelMat[i]*(oS.alphas[i]-alphaIold)*oS.K[i,j]- oS.labelMat[j]*(oS.alphas[j]-alphaJold)*oS.K[j,j]
        #步骤8:根据b_1和b_2更新b
        if (0 < oS.alphas[i]) and (oS.C > oS.alphas[i]): oS.b = b1
        elif (0 < oS.alphas[j]) and (oS.C > oS.alphas[j]): oS.b = b2
        else: oS.b = (b1 + b2)/2.0
        return 1
    else:
        return 0

"""
Parameters:
    dataMatIn - 数据矩阵
    classLabels - 数据标签
    C - 松弛变量
    toler - 容错率
    maxIter - 最大迭代次数
    kTup - 包含核函数信息的元组
Returns:
    oS.b - SMO算法计算的b
    oS.alphas - SMO算法计算的alphas
"""
# 完整版线性SMO算法的外循环代码
def smoP(dataMatIn, classLabels, C, toler, maxIter, kTup = ('lin',0)):
    oS = optStruct(np.mat(dataMatIn), np.mat(classLabels).transpose(), C, toler, kTup)#初始化数据结构
    iter = 0#初始化当前迭代次数
    entireSet = True; alphaPairsChanged = 0
    #遍历整个数据集都alpha也没有更新或者超过最大迭代次数,则退出循环
    while (iter < maxIter) and ((alphaPairsChanged > 0) or (entireSet)):
        alphaPairsChanged = 0
        if entireSet:#遍历整个数据集 
            for i in range(oS.m):       
                alphaPairsChanged += innerL(i,oS)#使用优化的SMO算法
                print("全样本遍历:第%d次迭代 样本:%d, alpha优化次数:%d" % (iter,i,alphaPairsChanged))
            iter += 1
        else:#遍历非边界值
            nonBoundIs = np.nonzero((oS.alphas.A > 0) * (oS.alphas.A < C))[0]#遍历不在边界0和C的alpha
            for i in nonBoundIs:
                alphaPairsChanged += innerL(i,oS)
                print("非边界遍历:第%d次迭代 样本:%d, alpha优化次数:%d" % (iter,i,alphaPairsChanged))
            iter += 1
        if entireSet:#遍历一次后改为非边界遍历
            entireSet = False
        elif (alphaPairsChanged == 0):#如果alpha没有更新,计算全样本遍历
            entireSet = True 
        print("迭代次数: %d" % iter)
    return oS.b,oS.alphas#返回SMO算法计算的b和alphas

"""
Parameters:
    k1 - 使用高斯核函数的时候表示到达率
Returns:
    无
"""
# 测试函数
def testRbf(k1 = 0.3):
    dataArr,labelArr = loadDataSet('testSetRBF.txt')#加载训练集
    b,alphas = smoP(dataArr, labelArr, 200, 0.0001, 100, ('rbf', k1))#根据训练集计算b和alphas
    datMat = np.mat(dataArr); labelMat = np.mat(labelArr).transpose()
    svInd = np.nonzero(alphas.A > 0)[0]#获得支持向量
    sVs = datMat[svInd]
    labelSV = labelMat[svInd];
    print("支持向量个数:%d" % np.shape(sVs)[0])
    m,n = np.shape(datMat)
    errorCount = 0
    for i in range(m):
        kernelEval = kernelTrans(sVs,datMat[i,:],('rbf', k1))#计算各个点的核
        predict = kernelEval.T * np.multiply(labelSV,alphas[svInd]) + b#根据支持向量的点,计算超平面,返回预测结果
        #返回数组中各元素的正负符号,用1和-1表示,并统计错误个数
        if np.sign(predict) != np.sign(labelArr[i]): errorCount += 1
    print("训练集错误率: %.2f%%" % ((float(errorCount)/m)*100))#打印错误率
    dataArr,labelArr = loadDataSet('testSetRBF2.txt')#加载测试集
    errorCount = 0
    datMat = np.mat(dataArr); labelMat = np.mat(labelArr).transpose()
    m,n = np.shape(datMat)
    for i in range(m):
        kernelEval = kernelTrans(sVs,datMat[i,:],('rbf', k1))#计算各个点的核
        predict=kernelEval.T * np.multiply(labelSV,alphas[svInd]) + b#根据支持向量的点,计算超平面,返回预测结果
        #返回数组中各元素的正负符号,用1和-1表示,并统计错误个数
        if np.sign(predict) != np.sign(labelArr[i]): errorCount += 1
    print("测试集错误率: %.2f%%" % ((float(errorCount)/m)*100))#打印错误率


if __name__ == '__main__':
    testRbf()

全样本遍历:第2次迭代 样本:99, alpha优化次数:0
迭代次数: 3
支持向量个数:27
训练集错误率: 0.00%
测试集错误率: 3.00%
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 2
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值