n 个元素的集合{1,2,., n }可以划分为若干个非空子集。例如,当n=4 时,集合{1,2, 3,4}可以划分为15 个不同的非空子集如下:
{{1},{2},{3},{4}},
{{1,3},{2},{4}},
{{1,4},{2},{3}},
{{2,3},{1},{4}},
{{2,4},{1},{3}},
{{3,4},{1},{2}},
{{1,2},{3,4}},
{{1,3},{2,4}},
{{1,4},{2,3}},
{{1,2,3},{4}},
{{1,2,4},{3}},
{{1,3,4},{2}},
{{2,3,4},{1}},
{{1,2,3,4}}
给定正整数n和m,利用分治算法计算出n 个元素的集合{1,2,., n }可以划分为多少个不同的由m个非空子集组成的集合。
Input
元素个数n和非空子集数m。
Output
计算出共有多少个不同的由m 个非空子集组成的集合。
Sample Input
4 2
Sample Output
7
直接输出样例的同学小心挂科哦~
?
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
include
using namespace std;
int f(int n,int m)
{
if(m==1||n==m)
return 1;
else
return f(n-1,m-1)+f(n-1,m)*m;
}
int main(void)
{
int n,m;
int sum=0;
cin>>n>>m;
sum=f(n,m);
cout<
include
using namespace std;
int main()
{
int n,a[30000],Count=0;
cin>>n;
for(int i=0;i