[分治]-集合划分问题 [分治]-逆序对问题

n 个元素的集合{1,2,., n }可以划分为若干个非空子集。例如,当n=4 时,集合{1,2, 3,4}可以划分为15 个不同的非空子集如下:

{{1},{2},{3},{4}},

{{1,3},{2},{4}},

{{1,4},{2},{3}},

{{2,3},{1},{4}},

{{2,4},{1},{3}},

{{3,4},{1},{2}},

{{1,2},{3,4}},

{{1,3},{2,4}},

{{1,4},{2,3}},

{{1,2,3},{4}},

{{1,2,4},{3}},

{{1,3,4},{2}},

{{2,3,4},{1}},

{{1,2,3,4}}

给定正整数n和m,利用分治算法计算出n 个元素的集合{1,2,., n }可以划分为多少个不同的由m个非空子集组成的集合。

Input

元素个数n和非空子集数m。

Output

计算出共有多少个不同的由m 个非空子集组成的集合。

Sample Input
4 2

Sample Output
7

直接输出样例的同学小心挂科哦~

?

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29

include

using namespace std;

int f(int n,int m)
{
if(m==1||n==m)
return 1;
else
return f(n-1,m-1)+f(n-1,m)*m;
}

int main(void)
{
int n,m;
int sum=0;
cin>>n>>m;
sum=f(n,m);
cout<

include

using namespace std;

int main()
{
int n,a[30000],Count=0;
cin>>n;
for(int i=0;i

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值