提供一个暴力的想法
极大肯定是两个点在圆周上
然后
O(n3)
暴力吧卡卡常数就过了
好吧。。。
其实有个
O(n2lgn)
的解法 主要思路就是对于每个点求包含这个点的最被包含点集
具体看爱神Blog
http://blog.csdn.net/acm_cxlove/article/details/7894310
#include<cstdio>
#include<iostream>
#include<cmath>
#include<cstring>
#include<algorithm>
using namespace std;
const
double r=1;
const
double pi=acos(-1);
const
double eps=1e-7;
struct Circle
{
double x,y;
inline void get(){scanf("%lf%lf",&x,&y);}
}P[100001];
#define abs(a) ((a)<0?(-(a)):(a))
struct Pair
{
double bg;
int ed;
inline friend bool operator <(Pair a,Pair b){return a.bg<b.bg||(abs(a.bg-b.bg)<eps&&a.ed<b.ed);}
}Cache[100001];
inline double dis(Circle a,Circle b){return sqrt((a.x-b.x)*(a.x-b.x)+(a.y-b.y)*(a.y-b.y));}
int main()
{
while(true)
{
int n,tot,ans=0;
scanf("%d\n",&n);
if(n==0)return 0;
for(int i=1;i<=n;i++)P[i].get();
for(int i=1;i<=n;i++)
{
tot=0;
for(int j=1;j<=n;j++)
if(i^j)
{
double D=dis(P[i],P[j]);
if(D>2.0)continue;
double T=atan2(P[j].y-P[i].y,P[j].x-P[i].x);
T=T<0?T+2*pi:T;
double Pt=acos(D/2.0);
Cache[++tot]=(Pair){T-Pt+2*pi,false};
Cache[++tot]=(Pair){T+Pt+2*pi,true};
}
int sum=0;
sort(Cache+1,Cache+1+tot);
for(int i=1;i<=tot;i++)
if(Cache[i].ed)sum--;
else ans=max(ans,++sum);
}
printf("%d\n",ans+1);
}
return 0;
}