题目链接:
http://acm.hdu.edu.cn/showproblem.php?pid=5852
https://en.wikipedia.org/wiki/Lindström–Gessel–Viennot_lemma
行列式的sgn刚好是容斥系数 糖教说这个可以应用到区间图
所以直接建行列式然后做成对角线就可以了
#include<cstdio>
#include<iostream>
#include<cstdlib>
#include<cmath>
#include<algorithm>
using namespace std;
char c;
inline void read(int&a)
{
a=0;do c=getchar();while(c<'0'||c>'9');
while(c<='9'&&c>='0')a=(a<<3)+(a<<1)+c-'0',c=getchar();
}
const
int Mod=1e9+7;
int mul(int x,int y)
{
return x*1ll*y%Mod;
}
int add(int x,int y)
{
int res=x+y;
if(res>=Mod)res-=Mod;
if(res<0)res+=Mod;
return res;
}
int Pow(int a,int x)
{
int res=1;
for(;x;x>>=1,a=mul(a,a))if(x&1)res=mul(res,a);
return res;
}
int Rev(int x)
{return Pow(x,Mod-2);}
const
int MAXN=200;
int A[MAXN][MAXN];
int Guess(int n)
{
int f=1,t=Mod-f;
for(int i=1;i<=n;i++)
{
int r=-1;
for(int j=i;j<=n;j++)
if(A[j][i]){r=j;break;}
if(r==-1)return 0;
if(r!=i)swap(f,t);
for(int j=i;j<=n;j++)
swap(A[i][j],A[r][j]);
for(int j=i+1;j<=n;j++)
{
int s=mul(A[j][i],Rev(A[i][i]));
if(s)
for(int k=i;k<=n;k++)
A[j][k]=add(A[j][k],-mul(s,A[r][k]));
}
}
int res=1;
for(int i=1;i<=n;i++)
res=mul(res,A[i][i]);
return mul(res,f);
}
int Fact[200001],Re[200001];
int C(int x,int y)
{
if(x<y)return 0;
return mul(mul(Fact[x],Re[x-y]),Re[y]);
}
int a[200001],b[200001];
int main()
{
Fact[0]=1;
for(int i=1;i<=200000;i++)Fact[i]=mul(Fact[i-1],i);
Re[200000]=Pow(Fact[200000],Mod-2);
for(int i=199999;~i;i--)Re[i]=mul(Re[i+1],i+1);
int T;
read(T);
while(T--)
{
int n,m;
read(n),read(m);
for(int i=1;i<=m;i++)read(a[i]);
for(int i=1;i<=m;i++)read(b[i]);
for(int i=1;i<=m;i++)
for(int j=1;j<=m;j++)
A[i][j]=C(b[j]-a[i]+n-1,n-1);
int res=Guess(m);
cout<<res<<endl;
}
return 0;
}