支配值数目

给出2个有序数组,int a[]={1,3,5,7,9},b[]={2,3,4,7,8};怎么找到a[]中每一个元素比b[]中元素大的个数的总数?

法一:

#include<stdio.h>
void getCount(int a[],int n,int b[],int m)
{
	int from=0,count=0,k=0;
	for(int i=0;i<n;i++)
	{
		for(int j=from;j<m;j++)
		{
			if(b[j]<a[i])
			{
				k++;
				from=j+1;
			}
			else
				break;
		}
		count+=k;
	}
	printf("the count is:%d\n",count);
}
int main()
{
	int a[]={1,3,5,7,9},b[]={2,3,4,7,8};
	getCount(a,sizeof(a)/sizeof(int),b,sizeof(b)/sizeof(int));
	return 0;
}
法二:
int  dominance_count(int f[], int g[], int m, int n)
{
     int  index_f, index_g;
     int  count;

     count = index_f = index_g = 0;
     while (index_f < m && index_g < n)
          if (f[index_f] <= g[index_g])
               index_f++;
          else
               index_g++, count += m - index_f;
     return count;
}


/* ------------------------------------------------------ */

#include <stdio.h>

void main(void)
{
     int  x[] = {  1,  2,  4,  7,  9, 12, 13, 15, 16, 20};
     int  nx  = sizeof(x)/sizeof(int);
     int  y[] = {  4,  5,  7,  8,  9, 10, 11, 13, 16, 19};
     int  ny  = sizeof(y)/sizeof(int);
     int  dominance_count(int [], int [], int, int), i;

     printf("\nDominance Count of two Increasing Arrays\n");
     printf("\n  #   Array 1   Array 2");
     printf("\n --   -------   -------");

     for (i = 0; i < nx; i++)
          printf("\n%3d%10d%10d", i, x[i], y[i]);
     printf("\n\nThere are %d Dominance Pairs.", 
            dominance_count(x, y, nx, ny));
}





### 数据预处理与PCA计算 为了实现主成分分析(PCA)并基于贡献率加权对31个地区的综合得分进行排序,可以按照以下方法完成。以下是详细的流程描述: #### 1. 数据加载与预处理 在执行PCA之前,需要先加载数据并对数型变量进行标准化处理。这是因为PCA依赖于协方差矩阵的特征分解,而不同尺度的数据会对结果造成偏差。 ```python import pandas as pd from sklearn.preprocessing import StandardScaler # 加载Excel文件 data = pd.read_excel('regions_data.xlsx') # 假设前几列为地区名称或其他非数列,提取数部分作为X X = data.iloc[:, 1:].values # 调整索引范围以适应实际数据结构 # 对数据进行均方差标准化 scaler = StandardScaler() X_scaled = scaler.fit_transform(X) ``` 上述代码实现了从Excel文件中读取数据,并对数型变量进行了均方差标准化[^1]。 --- #### 2. 主成分分析(PCA) 接下来利用`sklearn.decomposition.PCA`模块来执行主成分分析。这里需要注意的是,应根据累计方差贡献率选择合适的主成分数目。 ```python from sklearn.decomposition import PCA # 初始化PCA模型,假设我们希望保留90%以上的总方差 pca = PCA(n_components=0.9) # 计算主成分 principal_components = pca.fit_transform(X_scaled) # 查看各主成分的方差贡献率及其累加 explained_variance_ratio = pca.explained_variance_ratio_ cumulative_explained_variance = explained_variance_ratio.cumsum() print(f"各主成分的方差贡献率为: {explained_variance_ratio}") print(f"累计方差贡献率为: {cumulative_explained_variance}") ``` 此段代码展示了如何通过设置参数`n_components=0.9`自动决定所需主成分数目,使得其能解释至少90%的总体方差[^3]。 --- #### 3. 综合得分计算 一旦获得了主成分及其对应权重(即方差贡献率),就可以据此为每个地区计算综合得分。具体而言,将每条记录投影到各个主成分上的坐标乘以其对应的方差贡献率再求和即可得到最终评分。 ```python # 构造综合得分 weighted_scores = principal_components * explained_variance_ratio[:len(principal_components[0])] composite_score = weighted_scores.sum(axis=1) # 将综合得分加入原DataFrame以便后续排序 data['Composite_Score'] = composite_score # 按照综合得分降序排列 ranked_regions = data.sort_values(by='Composite_Score', ascending=False).reset_index(drop=True) ``` 此处采用的方法是依据每个主成分的重要性对其进行加权平均从而得出整体表现指标[^2]。 --- #### 4. 结果展示 最后可打印或保存排名表供进一步分析使用。 ```python # 输出前几名区域作为示例 print(ranked_regions[['Region_Name', 'Composite_Score']].head(10)) # 导出至新Excel文档 ranked_regions.to_excel('ranked_regions_output.xlsx', index=False) ``` 这一步骤完成了整个工作流——从原始数据准备到最后输出带有序号的结果表格。 --- ###
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值